留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2基增强型地热系统中流体-花岗岩相互作用研究进展及展望

薛卉 舒彪 陈科平 路伟 张森 胡永鹏

薛卉, 舒彪, 陈科平, 路伟, 张森, 胡永鹏. CO2基增强型地热系统中流体-花岗岩相互作用研究进展及展望[J]. 地质科技通报, 2021, 40(3): 45-53. doi: 10.19509/j.cnki.dzkq.2021.0021
引用本文: 薛卉, 舒彪, 陈科平, 路伟, 张森, 胡永鹏. CO2基增强型地热系统中流体-花岗岩相互作用研究进展及展望[J]. 地质科技通报, 2021, 40(3): 45-53. doi: 10.19509/j.cnki.dzkq.2021.0021
Xue Hui, Shu Biao, Chen Keping, Lu Wei, Zhang Sen, Hu Yongpeng. Research progress of fluid-granite interaction in CO2 based enhanced geothermal system[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 45-53. doi: 10.19509/j.cnki.dzkq.2021.0021
Citation: Xue Hui, Shu Biao, Chen Keping, Lu Wei, Zhang Sen, Hu Yongpeng. Research progress of fluid-granite interaction in CO2 based enhanced geothermal system[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 45-53. doi: 10.19509/j.cnki.dzkq.2021.0021

CO2基增强型地热系统中流体-花岗岩相互作用研究进展及展望

doi: 10.19509/j.cnki.dzkq.2021.0021
基金项目: 

国家自然科学基金面上项目 42072304

国家自然科学基金青年基金项目 41702387

详细信息
    作者简介:

    薛卉(1990-), 女, 现正攻读地质工程专业硕士学位, 主要从事水文地质与工程地质及非常规能源开采等方面的研究工作。E-mail: 422766340@qq.com

    通讯作者:

    舒彪(1986-), 男, 副教授, 硕士生导师, 主要从事岩石力学及非常规能源开采等方面的研究工作。E-mail: biaoshu@csu.edu.cn

  • 中图分类号: P588.12+1;P641.3

Research progress of fluid-granite interaction in CO2 based enhanced geothermal system

  • 摘要: CO2与水相比,膨胀性大、黏度低、与岩石反应程度低,并且在作为增强型地热系统(EGS)渗流传热流体时,比水具有更高的换热效率。对CO2-EGS生产过程中储层岩石物性变化的研究具有重要意义,从理论研究、实验研究、数值模拟3个方面,对CO2基增强型地热系统CO2-EGS中流体-岩石相互作用的研究现状进行了总结,并且从矿物成分、微观孔结构和力学性质3个方面对储层岩石性质的变化进行了评价。结果表明,CO2-水-岩石相互作用参与反应的矿物主要为石英、长石类;而沉淀的矿物为蒙脱石、伊利石及方解石等。CO2-水-岩石相互作用会导致储层岩石的力学性质下降,孔隙结构特征改变。最后,讨论了CO2作为EGS渗流传热流体仍需攻克的难点问题,包括:CO2的热动力学特征、换热效率,CO2-水-岩石的相互作用及其对储层性质的改变,影响CO2-EGS经济性的因素,以及CO2-EGS数值模型的研究等。针对这些方面的研究可为今后CO2-EGS的开发奠定基础。

     

  • 图 1  CO2-EGS储层区域划分示意图(据文献[24])

    Figure 1.  Schematic diagram of regional division of CO2-EGS reservoir

    图 2  国内外期刊在EGS、CO2-EGS领域的研究成果

    Figure 2.  Annual publication volume of domestic and foreign journals in the fields of EGS and CO2-EGS

    图 3  CO2-EGS不同研究方向的研究成果

    Figure 3.  Publications of different research directions of CO2-EGS

  • [1] 许天福, 胡子旭, 李胜涛, 等. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 2018, 92(9): 1936-1947. doi: 10.3969/j.issn.0001-5717.2018.09.012

    Xu T F, Hu Z X, Li S T, et al. Enhanced geothermal system: International progresses and research status of China[J]. Acta Geologica Sinica, 2018, 92(9): 1936-1947(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.09.012
    [2] 窦斌, 高辉, 周刚, 等. 我国发展增强型地热开采技术所面临的机遇与挑战[J]. 地质科技情报, 2014, 33(5): 208-210. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405032.htm

    Dou B, Gao H, Zhou G, et al. Opportunities and challenges of developing enhance geothermal system technology in China[J]. Geological Science and Technology Information, 2014, 33(5): 208-210(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405032.htm
    [3] 肖鹏, 窦斌, 田红, 等. 开采海洋区域干热岩的可行性探讨[J]. 海洋地质前沿, 2018, 34(8): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201808007.htm

    Xiao P, Dou B, Tian H, et al. Feasibility of exploitation of submarine hot dry rock in offshore area[J]. Marine Geology Frontiers, 2018, 34(8): 55-60(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201808007.htm
    [4] 徐超, 窦斌, 田红, 等. 二氧化碳爆破致裂建造增强型地热系统热储层工艺探讨[J]. 地质科技情报, 2019, 38(5): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905027.htm

    Xu C, Dou B, Tian H, et al. Process of carbon dioxide blasting to build EGS thermal reservoir[J]. Geological Science and Technology Information, 2019, 38(5): 247-252(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905027.htm
    [5] 荆铁亚, 赵文韬, 郜时旺, 等. 干热岩地热开发实践及技术可行性研究[J]. 中外能源, 2018, 23(11): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201811004.htm

    Jing T Y, Zhao W T, Gao S W, et al. Practice and technical feasibility study of hot dry rock geothermal development[J]. Sino-Global Energy, 2018, 23(11): 17-22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201811004.htm
    [6] 康玲, 王时龙, 李川. 增强地热系统EGS的人工热储技术[J]. 机械设计与制造, 2008(9): 141-143. doi: 10.3969/j.issn.1001-3997.2008.09.059

    Kang L, Wang S L, Li C. Reservoir technology in enhanced geothermal systems[J]. Machinery Design & Manufacture, 2008(9): 141-143(in Chinese with English abstract). doi: 10.3969/j.issn.1001-3997.2008.09.059
    [7] 国家能源局. 地热能术语[S]. 北京: 中国石化出版社, 2018.

    National Energy Administration. Geothermal energy terminology[S]. Beijing: Sinopec Press, 2018(in Chinese).
    [8] Panel M L. The future of geothermal energy. Impact of enhanced geothermal systems[EGS] on the United States in the 21st century[J]. Geothermics, 2006, 17(5/6): 881-882. http://www.osti.gov/scitech/biblio/1220063
    [9] Fard M H, Hooman K, Chua H T. Numerical simulation of a supercritical CO2 geothermosiphon[J]. International Communications in Heat & Mass Transfer, 2010, 37(10): 1447-1451. http://www.sciencedirect.com/science/article/pii/S0735193310002150
    [10] Na J, Xu T, Yuan Y, et al. An Integrated Study of Fluid-Rock Interaction in a CO2-based Enhanced Geothermal System: A Case Study of Songliao Basin, China[J]. Applied Geochemistry, 2015, 59: 166-177. doi: 10.1016/j.apgeochem.2015.04.018
    [11] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45. doi: 10.3981/j.issn.1000-7857.2012.32.004

    Xu T F, Zhang Y J, Zeng Z F, et al. Technology progress in an enhanced geothermal system (hot dry rock)[J]. Science & Technology Review, 2012, 30(32): 42-45(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2012.32.004
    [12] Brown D A Hot Dry Rock geothermal energy concept utilizing supercritical CO2 instead of water[C]. Stanford, California: Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford University, 2000.
    [13] Atrens A D, Gurgenci H, Rudolph V. Economic optimization of a CO2-based EGS power plant[J]. Energy & Fuels, 2011, 25(8): 3765-3775. doi: 10.1021/ef200537n
    [14] Zhang F Z, Jiang P X, Xu R N. System thermodynamic performance comparison of CO2-EGS and water-EGS systems[J]. Applied Thermal Engineering, 2013, 61(2): 236-244. doi: 10.1016/j.applthermaleng.2013.08.007
    [15] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. doi: 10.1038/nature11475
    [16] Pruess K. On production behavior of enhanced geothermal systems with CO2 as working fluid[J]. Energy Conversion & Management, 2008, 49(6): 1446-1454. http://www.sciencedirect.com/science/article/pii/S019689040800006X
    [17] Pruess K. Enhanced geothermal systems (EGS) using CO2 as working fluid-A novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35(4): 351-367. doi: 10.1016/j.geothermics.2006.08.002
    [18] Cui G, Ren S, Rui Z, et al. The influence of complicated fluid-rock interactions on the geothermal exploitation in the CO2, plume geothermal system[J]. Applied Energy, 2017, 227: 49-63. http://www.sciencedirect.com/science/article/pii/S0306261917315593
    [19] Wu Y, Li P. The potential of coupled carbon storage and geothermal extraction in a CO2-enhanced geothermal system: a review[J]. Geothermal Energy, 2020, 8(1): 1-28. doi: 10.1186/s40517-020-0157-0
    [20] Sun F, Yao Y, Li G, et al. Geothermal energy development by circulating CO2 in a U-shaped closed loop geothermal system[J]. Energy Conversion and Management, 2018, 174: 971-982. doi: 10.1016/j.enconman.2018.08.094
    [21] Pan L, Freifeld B, Doughty C, et al. Fully coupled wellbore-reservoir modeling of geothermal heat extraction using CO2 as the working fluid[J]. Geothermics, 2015, 53: 100-113. doi: 10.1016/j.geothermics.2014.05.005
    [22] Luo F, Xu R N, Jiang P X. Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with CO2 as the working fluid (CO2-EGS)[J]. Energy, 2014, 64: 307-322. doi: 10.1016/j.energy.2013.10.048
    [23] Bataillé A, Genthon P, Rabinowic Z M, et al. Modeling the coupling between free and forced convection in a vertical permeable slot: Implications for the heat production of an Enhanced Geothermal System[J]. Geothermics, 2010, 35(5): 654-682.
    [24] Ueda A, Kato K, Ohsumi T, et al. Experimental studies of CO2-rock interaction at elevated temperatures under hydrothermal conditions[J]. Geochemical Journal, 2005, 39(5): 417-425. doi: 10.2343/geochemj.39.417
    [25] Isaka B L A, Ranjith P G, Rathnaweera T D, et al. Influence of long-term operation of supercritical carbon dioxide based enhanced geothermal system on mineralogical and microstructurally-induced mechanical alteration of surrounding rock mass[J]. Renewable energy, 2019, 136: 428-441. doi: 10.1016/j.renene.2018.12.104
    [26] Giolito C, Ruggieri G, Gianelli G. Fluid evolution in the deep reservoir of the Mt Amiata geothermal field, Italy[J]. Transactions - Geothermal Resources Council, 2007, 31: 153-158.
    [27] 侯大力, 罗平亚, 王长权, 等. 高温高压下CO2在水中溶解度实验及理论模型[J]. 吉林大学学报: 地球科学版, 2015, 45(2): 564-572. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201502026.htm

    Hou D L, Luo P Y, Wang C Q, et al. Experimental research and theoretical model for CO2 solubility in water under high temperature and high pressure[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(2): 564-572(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201502026.htm
    [28] 李靖. 高温高压高含CO2天然气在地层水中溶解度理论研究[D]. 成都: 西南石油大学, 2017.

    Li J. Theoretical study on solubility of high CO2 content natural gas in formation water at high temperature and high pressure high[D]. Chengdu: Southwest Petroleum University, 2017(in Chinese with English abstract).
    [29] 陈东灿, 窦斌, 田红, 等. 基于花岗闪长岩矿物成分的热导率预测模型[J]. 地质科技情报, 2019, 38(2): 262-266. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902031.htm

    Chen D C, Dou B, Tian H, et al. Thermal conductivity prediction model based on mineral composition of granodiorite[J]. Geological Science and Technology Information, 2019, 38(2): 262-266(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902031.htm
    [30] 喻勇, 徐达, 窦斌, 等. 高温花岗岩遇水冷却后可钻性试验研究[J]. 地质科技情报, 2019, 38(4): 287-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904031.htm

    Yu Y, Xu D, Dou B, et al. Experimental study on drillability of high temperature granite after water cooling[J]. Geological Science and Technology Information, 2019, 38(4): 287-292(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904031.htm
    [31] Suto Y, Liu L, Yamasaki N, et al. Initial behavior of granite in response to injection of CO2-saturated fluid[J]. Applied Geochemistry, 2007, 22(1): 202-218. doi: 10.1016/j.apgeochem.2006.09.005
    [32] Lin H, Fujii T, Takisawa R, et al. Experimental evaluation of interactions in supercritical CO2/water/rock minerals system under geologic CO2 sequestration conditions[J]. Journal of Materials science, 2008, 43(7): 2307-2315. doi: 10.1007/s10853-007-2029-4
    [33] Liu L, Suto Y, Bignall G, et al. CO2 injection to granite and sandstone in experimental rock/hot water systems[J]. Energy Conversion & Management, 2003, 44(9): 1399-1410. http://www.ingentaconnect.com/content/el/01968904/2003/00000044/00000009/art00002
    [34] Lo Ré C, Kaszuba J P, Moore J N, et al. Fluid-rock interactions in CO2-saturated, granite-hosted geothermal systems: Implications for natural and engineered systems from geochemical experiments and models[J]. Geochimica et Cosmochimica Acta, 2014, 141: 160-178. doi: 10.1016/j.gca.2014.06.015
    [35] Shiraki R, Dunn T L. Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA[J]. Applied Geochemistry, 2000, 15(3): 265-279. doi: 10.1016/S0883-2927(99)00048-7
    [36] Watson M N, Zwingmann N, Lemon N M. The Ladbroke Grove-Katnook carbon dioxide natural laboratory: A recent CO2 accumulation in a lithic sandstone reservoir[J]. Energy, 2004, 29(9/10): 1457-1466. http://www.sciencedirect.com/science/article/pii/S0360544204001628
    [37] Rosenbauer R J, Koksalan T, Palandri J L. Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers[J]. Fuel Processing Technology, 2005, 86(14/15): 1581-1597. http://www.sciencedirect.com/science/article/pii/S037838200500024X
    [38] Sugama T, Ecker L, Butcher T. Carbonation of rock minerals by supercritical carbon dioxide at 250℃[M]. Upton, NY, USA: Energy Science & Technology Department, Brookhaven National Laboratory, 2010.
    [39] Sugama T, Gill S, Ecker L, et al. Susceptibility of granite rock to ScCO2/water at 200℃ and 250℃[M]. Upton NY USA: Energy Science & Technology Department, Brookhaven National Laboratory, 2011.
    [40] Lo Ré C, Kaszuba J, Moore J, et al. Supercritical CO2 in a granite-hosted geothermal system: experimental insights into multiphase fluid-rock interactions[C]. Stanford, California: The thirty-seventh workshop on geothermal reservoir engineering Proceedings, Stanford University, 2012.
    [41] Yoo S Y, Kuroda Y, Mito Y, et al. A geochemical clogging model with carbonate precipitation rates under hydrothermal conditions[J]. Applied Geochemistry, 2013, 30(2): 67-74. http://www.sciencedirect.com/science/article/pii/S0883292712002090
    [42] Kaieda H, Ueda A, Kubota K, et al. Field experiments for studying on CO2 sequestration in solid minerals at the Ogachi HDR geothermal site, Japan[C]. Stanford, California: Thirty-fourth Workshop on Geothermal Reservoir Engineering, Stanford University, 2009.
    [43] Jung Y, Xu T, Dobson P F, et al. Experiment-based modeling of geochemical interactions in CO2-based geothermal systems[C]. Stanford, California: The thirty-eighet workshop on geothermal reservoir engineering Proceedings, Stanford University, 2013.
    [44] Borgia A, Pruess K, Kneafsey T J, et al. Numerical simulation of salt precipitation in the fractures of a CO2 enhanced geothermal system[J]. Geothermics, 2012, 44: 13-22. doi: 10.1016/j.geothermics.2012.06.002
    [45] Johnson J W, Nitao J J, Knauss K G. Reactive transport modelling of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning[J]. Geological Society London Special Publications, 2004, 233(1): 107-128. doi: 10.1144/GSL.SP.2004.233.01.08
    [46] Ketzer J M, Iglesias R, Einloft S, et al. Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil[J]. Applied Geochemistry, 2009, 24(5): 760-767. doi: 10.1016/j.apgeochem.2009.01.001
    [47] 赵仁保, 孙海涛, 吴亚生, 等. 二氧化碳埋存对地层岩石影响的室内研究[J]. 中国科学: 技术科学, 2010, 40(4): 378-384. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201004005.htm

    Zhao R B, Sun H T, Wu Y S, et al. Influence of CO2 corrosion on rock structure and its mechanical characteristics[J]. Scientia Sinica(Technologica), 2010, 40(4): 378-384(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201004005.htm
    [48] Ueda A, Ajima S, Yamamoto M. Isotopic study of carbonate minerals from the sumikawa geothermal area and its application to water movement[J]. Journal of the Geothermal Research Society of Japan, 2001, 23(3): 181-196.
    [49] 朱焕来, 曲希玉, 刘立, 等. CO2流体-长石相互作用实验研究[J]. 吉林大学学报: 地球科学版, 2011, 41(3): 697-706. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201103011.htm

    Zhu H L, Qu X Y, Liu L, et al. Study on interaction between the feldspar and CO2 fluid[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(3): 697-706(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201103011.htm
    [50] Xu T, Feng G, Shi Y. On fluid-rock chemical interaction in CO2-based geothermal systems[J]. Journal of Geochemical Exploration, 2014, 144: 179-193. doi: 10.1016/j.gexplo.2014.02.002
    [51] 翔敖, 卢义玉, 汤积仁, 等. 页岩吸附CO2变形特性试验研究[J]. 煤炭学报, 2015, 40(12): 2893-2899.

    Xiang A, Lu Y Y, Tang J R, et al. Deformation properties of shale by sorbing carbon dioxide[J]. Journal of China Coal Society, 2015.40(12): 2893-2899(in Chinese with English abstract).
    [52] Jiang Y, Luo Y, Lu Y, et al. Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale[J]. Energy, 2016, 97: 173-181. doi: 10.1016/j.energy.2015.12.124
    [53] 张臣, 周世新, 陈科, 等. 高压条件下CO2对页岩微观孔隙结构影响及其在页岩中的吸附特征[J]. 地球科学, 2019, 44(11): 3773-3782. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911017.htm

    Zhang C, Zhou S X, Chen K, et al. Impact on microscopic pore structure and adsorption behavior of carbon dioxide on shale under high pressure Condition[J]. Earth Science, 2019, 44(11): 3773-3782(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911017.htm
    [54] 邹华耀, 吴时国. 有机质热成熟度指数理论与应用研究的新进展[J]. 天然气地球科学, 1992, 3(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199206000.htm

    Zou H Y, Wu S G. New progress in theory and application of thermal maturity index of organic matter[J]. Natural Gas Geoscience, 1992, 3(6): 1-8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199206000.htm
    [55] Okamoto I, Li X, Ohsumi T. Effect of supercritical CO2 as the organic solvent on cap rock sealing performance for underground storage[J]. Energy, 2005, 30(11/12): 2344-2351.
    [56] Yin H, Zhou J, Jiang Y, et al. Physical and structural changes in shale associated with supercritical CO2 exposure[J]. Fuel, 2016, 184: 289-303. doi: 10.1016/j.fuel.2016.07.028
    [57] Lyu Q, Long X, Pg R, et al. A laboratory study of geomechanical characteristics of black shales after sub-critical/super-critical CO2 brine saturation[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2018, 4: 141-156. doi: 10.1007/s40948-018-0079-5
    [58] Zhang S, Xian X, Zhou J, et al. Mechanical behaviour of Longmaxi black shale saturated with different fluids: An experimental study[J]. Royal Society of Chemistry Advances. 2017, 7(68): 42946-42955.
    [59] Lee B, Rathnaweera T D. Stress threshold identification of progressive fracturing in Bukit Timah granite under uniaxial and triaxial stress conditions[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016, 2(4): 301-330. doi: 10.1007/s40948-016-0037-z
    [60] Lu Y, Ao X, Tang J, et al. Swelling of shale in supercritical carbon dioxide[J]. Journal of Natural Gas Science & Engineering, 2016, 30: 268-275.
    [61] Xu T, Spycher N, Sonnenthal E, et al. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions[J]. Computers & Geosciences, 2011, 37(6): 763-774. http://www.sciencedirect.com/science/article/pii/S0098300410003316
    [62] Bächler D. Coupled thermal-hydraulic-chemical modelling at the Soultz-sous-Forêts HDR Reservoir (France)[D]. Zurich: Swiss Federal Institute of Technology Zurich, 2003.
    [63] Jörn Bartels, Cheng L Z, Clauser C, et al. Numerical simulation of reactive flow in hot aquifers[M]. Berlin Heidelberg: Springer, 2003.
    [64] Wolery T J. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: theoretical manual, user's guide and related documentation (version 7.0). Part 3[M]. California: Lawrence Livermore Laboratory, University of California, 1992.
    [65] Xu T, Pruess K. Reactive transport modeling to study fluid-rock interactions in enhanced geothermal systems (EGS) with CO2 as working fluid[C]. Bali Indonesia: Proceedings World Geothermal Congress, 2010.
    [66] 那金, 许天福, 魏铭聪, 等. 增强地热系统热储层-盐水-CO2相互作用[J]. 吉林大学学报: 地球科学版, 2015, 45(5): 1493-1501. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201505021.htm

    Na J, Xu T F, Wei M C, et al. Interaction of rock-brine-supercritical CO2 in CO2-EGS reservoir[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(5): 1493-1501(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201505021.htm
    [67] Nitschke F, Held S, Himmelsbach T, et al. THC simulation of halite scaling in deep geothermal single well production[J]. Geothermics, 2017, 65: 234-243. doi: 10.1016/j.geothermics.2016.09.009
    [68] 陈继良, 黄文博, 曹文炅, 等. 增强型地热系统中液-岩化学作用数值模拟研究[J]. 新能源进展, 2016, 4(1): 48-55. doi: 10.3969/j.issn.2095-560X.2016.01.008

    Chen J L, Huang W B, Cao W J, et al. A numerical study on the effect of fluid-rock reaction during enhanced geothermal system heat extraction processes[J]. Advances in New and Renewable Energy, 2016, 4(1): 48-55(in Chinese with English abstract). doi: 10.3969/j.issn.2095-560X.2016.01.008
    [69] Bethke C M, Yeakel S. The geochemist's workbench release 8.0: Reaction modeling Guide[M]. Champaign, Illinois: University of Illinois, 2009.
    [70] Reed M, Spycher N. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1479-1492. doi: 10.1016/0016-7037(84)90404-6
  • 加载中
图(3)
计量
  • 文章访问数:  1071
  • PDF下载量:  709
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-28

目录

    /

    返回文章
    返回