留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温压条件对非饱和低渗透砂岩中CH4突破压力影响的实验研究

赵世宇 李铱 明亮 张勇 李旭峰 郑长远

赵世宇, 李铱, 明亮, 张勇, 李旭峰, 郑长远. 温压条件对非饱和低渗透砂岩中CH4突破压力影响的实验研究[J]. 地质科技通报, 2021, 40(3): 132-139. doi: 10.19509/j.cnki.dzkq.2021.0306
引用本文: 赵世宇, 李铱, 明亮, 张勇, 李旭峰, 郑长远. 温压条件对非饱和低渗透砂岩中CH4突破压力影响的实验研究[J]. 地质科技通报, 2021, 40(3): 132-139. doi: 10.19509/j.cnki.dzkq.2021.0306
Zhao Shiyu, Li Yi, Ming Liang, Zhang Yong, Li Xufeng, Zheng Changyuan. Experimental study on the effect of temperature and pressure on CH4 breakthrough pressure in unsaturated low-permeability sandstone[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 132-139. doi: 10.19509/j.cnki.dzkq.2021.0306
Citation: Zhao Shiyu, Li Yi, Ming Liang, Zhang Yong, Li Xufeng, Zheng Changyuan. Experimental study on the effect of temperature and pressure on CH4 breakthrough pressure in unsaturated low-permeability sandstone[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 132-139. doi: 10.19509/j.cnki.dzkq.2021.0306

温压条件对非饱和低渗透砂岩中CH4突破压力影响的实验研究

doi: 10.19509/j.cnki.dzkq.2021.0306
基金项目: 

国家自然科学基金 41702251

内蒙古自然科学基金 2019MS04018

江苏省煤基温室气体减排与资源化利用重点实验室创新项目 2019B005

青海省科学技术应用基础研究项目 2018-ZJ-785

详细信息
    作者简介:

    赵世宇(1992-), 男, 现正攻读环境工程专业硕士学位, 主要从事多孔介质渗流理论及应用研究。E-mail: zhaosy0707@163.com

    通讯作者:

    李铱(1988-), 男, 副教授, 主要从事多孔介质渗流理论及应用方面研究。E-mail: yi.li@imu.edu.cn

  • 中图分类号: P618.130.2+1

Experimental study on the effect of temperature and pressure on CH4 breakthrough pressure in unsaturated low-permeability sandstone

  • 摘要: 突破压力在气藏开采和盖层封闭性评价中起着重要的作用。为模拟地层温度压力变化对低渗透性砂岩中CH4突破压力的影响,采用逐步法对取自鄂尔多斯盆地早二叠世非饱和低渗透砂岩,进行了不同温压组合条件下的CH4突破压力实验。结果表明:随着温度或压力的升高,CH4突破压力和突破时间均呈下降趋势,且压力变化对CH4突破过程的影响更加显著。分析发现,温度压力对CH4突破压力的影响,是由于温压变化改变了界面张力和接触角的大小,进而控制突破压力的大小;另外,突破压力随着两相黏度比的增大而减小,且温度压力越高,黏度比对突破压力的影响越小。因此,实验温压范围内,对于非饱和低渗透砂岩储层,温度和压力越高越有利于气藏开采;对于非饱和低渗透砂岩盖层,温度和压力越低,盖层封闭性越好且越安全。

     

  • 图 1  岩心照片

    Figure 1.  Photographs of the core

    图 2  40倍偏光显微镜下岩心照片

    Figure 2.  Photographs of core under 40x polarizing microscope

    图 3  X射线衍射分析结果图

    Figure 3.  X-ray diffraction analysis results

    图 4  气体突破压力测试装置图

    Figure 4.  Diagram of gas breakthrough pressure test device

    图 5  CH4突破压力随温度、压力变化图

    Figure 5.  CH4 breakthrough pressure changes with temperature and pressure

    图 6  CH4突破时间随温度、压力变化图

    Figure 6.  CH4 breakthrough time changes with temperature and pressure

    图 7  CH4-H2O界面张力随温度、压力变化图(底图据文献[27])

    Figure 7.  CH4-H2O interfacial tension changes with temperature and pressure

    图 8  CH4突破压力随界面张力变化图

    Figure 8.  CH4 breakthrough pressure changes with interfacial tension

    图 9  两相密度差随温度、压力变化图

    Figure 9.  Density difference between the two phases changes with temperature and pressure

    图 10  CH4突破压力随CH4-H2O黏度比变化曲线

    Figure 10.  CH4 breakthrough pressure vs.CH4-H2O viscosity ratio curve

    表  1  注入压力增量和恒压时间

    Table  1.   Injection pressure increment and constant pressure time

    注入压力/MPa 恒压时间/min 注入压力增量/MPa
    P1≤2 30 0.2
    2<P1≤5 45 0.5
    5<P1≤10 60 1.0
    10<P1≤15 90 1.0
    15<P1 120 1.5
    注:P1为岩心入口端注入压力
    下载: 导出CSV
  • [1] 郭少斌, 郑红梅, 黄家国. 鄂尔多斯盆地上古生界非常规天然气综合勘探前景[J]. 地质科技情报, 2014, 33(6): 69-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406010.htm

    Guo S B, Zheng H M, Huang J G. Integrated exploration prospects of unconventional gas of Upper Paleozoic in Ordos Basin[J]. Geological Science and Technology Information, 2014, 33(6): 69-77(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406010.htm
    [2] Chapiro G, Bruining J. Combustion enhance recovery of shale gas[J]. Journal of Petroleum Science and Engineering, 2015, 127: 179-189. doi: 10.1016/j.petrol.2015.01.036
    [3] 杨涛, 曹涛涛, 刘虎, 等. 武威盆地上石炭统羊虎沟组页岩气成藏条件[J]. 地质科技情报, 2019, 38(3): 188-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903020.htm

    Yang T, Cao T T, Liu H, et al. Shale gas accumulation condition of the Upper Carboniferous Yanghugou Formation in Wuwei Basin[J]. Geological Science and Technology Information, 2019, 38(3): 188-199(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903020.htm
    [4] Cheng P, Yu Q. Experimental study on the relationship between the matric potential and methane breakthrough pressure of partially water-saturated shale fractures[J]. Journal of Hydrology, 2019, 578: 124044. doi: 10.1016/j.jhydrol.2019.124044
    [5] 程鹏举, 于青春. 非饱和低渗砂岩突破压力试验研究: 以柴达木盆地东部石炭系砂岩为例[J]. 水文地质工程地质, 2017, 44(6): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201706013.htm

    Cheng P J, Yu Q C. An experimental study of the breakthrough pressure of unsaturated low-permeability sandstone: a case study of the Carboniferous sandstone in the eastern Qaidam Basin[J]. Hydrogeology & Engineering Geology, 2017, 44(6): 77-82(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201706013.htm
    [6] Zhang C, Yu Q. The effect of water saturation on CH4 breakthrough pressure: An experimental study on the Carboniferous shales from the eastern Qaidam Basin, China[J]. Journal of Hydrology, 2016, 534(11): 832-848. http://www.sciencedirect.com/science/article/pii/S0022169416307090
    [7] Li Y, Yu Q. The effects of brine species on the formation of Residual Water in a CO2-Brine system[J]. Transport in Porous Media, 2014, 104: 553-564. doi: 10.1007/s11242-014-0349-9
    [8] Zhao Y, Yu Q. CO2 breakthrough pressure and permeability for unsaturated low-permeability sandstone of the Ordos Basin[J]. Journal of Hydrology, 2017, 550: 331-342. doi: 10.1016/j.jhydrol.2017.04.050
    [9] 谢升洪, 李伟, 冷福, 等. 致密砂岩油藏可动流体赋存规律及制约因素研究: 以鄂尔多斯盆地华庆油田长6段储层为例[J]. 地质科技情报, 2019, 38(5): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905011.htm

    Xie S H, Li W, Leng F, et al. Distribution and controlling factors of movable fluid in tight sandstone reservoir: Taking Chang 6 Formation of Huaqing Oilfield in Ordos Basin as an example[J]. Geological Science and Technology Information, 2019, 38(5): 105-114(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905011.htm
    [10] 周林, 刘皓天, 周坤, 等. 致密砂岩储层"甜点"识别及评价方法[J]. 地质科技通报, 2020, 39(4): 165-173. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004021.htm

    Zhou L, Liu H T, Zhou K, et al. "Sweet spot" identification and evaluation of tight sandstone reservoir[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 165-173(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004021.htm
    [11] 李欢, 王清斌, 庞小军, 等. 致密砂砾岩储层裂缝形成及储层评价: 以黄河口凹陷沙二段为例[J]. 地质科技情报, 2019, 38(1): 176-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901019.htm

    Li H, Wang Q B, Pang X J, et al. Fracture generation and reservoir evaluation of tight glutenite reservoir: A case study of second member of Shahejie Formation in Huanghekou Depression[J]. Geological Science and Technology Information, 2019, 38(1): 176-185(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901019.htm
    [12] 冯小哲, 祝海华. 鄂尔多斯盆地苏里格地区下石盒子组致密砂岩储层微观孔隙结构及分形特征[J]. 地质科技情报, 2019, 38(3): 147-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903015.htm

    Feng X Z, Zhu H H. Micro-pore structure and fractal characteristics of the Xiashihezi Formation tight sandstone reservoirs in Sulige Area, Ordos Basin[J]. Geological Science and Technology Information, 2019, 38(3): 147-156(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903015.htm
    [13] Li Y, Li X, Yu Q. Effects of composition and pore structure on the reservoir gas capacity of Carboniferous shale from Qaidam Basin, China[J]. Marine and Petroleum Geology, 2015, 62(1): 44-57.
    [14] Zhao Y, Yu Q. Effect of CH4 on the CO2 breakthrough pressure and permeability of partially saturated low-permeability sandstone in the Ordos Basin, China[J]. Journal of Hydrology, 2018, 556: 732-748. doi: 10.1016/j.jhydrol.2017.11.030
    [15] Hildenbenbrand A, Bertier P, Busch A, et al. Experimental investigation of the sealing capacity of generic clay-rich caprocks[J]. International Journal of Greenhouse Gas Control, 2013, 19: 620-641. doi: 10.1016/j.ijggc.2013.01.040
    [16] Guiltinan E J, Espinoza D N, Cockrell L P, et al. Textural and compositional controls on mudrock breakthrough pressure and permeability[J]. Advances in Water Resources, 2018, 121: 162-172. doi: 10.1016/j.advwatres.2018.08.014
    [17] 魏宁, 李小春, 王颖, 等. 不同温压条件下泥质粉砂岩二氧化碳突破压的试验研究[J]. 岩土力学, 2014, 35(1): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401014.htm

    Wei N, Li X C, Wang Y, et al. Experimental studies of CO2 breakthrough pressure of argillaceous siltstone under different pressures and temperatures[J]. Rock and Soil Mechanics, 2014, 35(1): 98-104(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401014.htm
    [18] Rezaeyan A, Tabatabaei-Nejad S A, Khodapanah E, et al. Parametric analysis of caprock integrity in relation with CO2 geosequestration: Capillary breakthrough pressure of caprock and gas efective permeability[J]. Greenhouse Gases: Science and Technology, 2015, 5(6), 714-731. doi: 10.1002/ghg.1516
    [19] 姚泾利, 王怀厂, 裴戈, 等. 鄂尔多斯盆地东部上古生界致密砂岩超低含水饱和度气藏形成机理[J]. 天然气工业, 2014, 34(1): 37-43. doi: 10.3787/j.issn.1000-0976.2014.01.005

    Yao J L, Wang H C, Pei G, et al. The Formation mechanism of Upper Paleozoic tight sand gas reservoirs with ultra-low water saturation in Eastern Ordos Basin[J]. Natural Gas Industry, 2014, 34(1): 37-43(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2014.01.005
    [20] 吴双, 汤达祯, 李松, 等. 温度/压力对甲烷超临界吸附能量参数的影响机制[J]. 煤炭科学技术, 2019, 47(9): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909004.htm

    Wu S, Tang D Z, Li S, et al. Effect of temperature and pressure on energy parameters of methane supercritical adsorption[J]. Coal Science and Technology, 2019, 47(9): 60-67(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909004.htm
    [21] Boulin P F, Bretonnier P, Vassil V, et al. Sealing efficiency of caprocks: Experimental investigation of entry pressure measurement methods[J]. Marine and Petroleum Geology, 2013, 48(48): 20-30.
    [22] Li Y, Yu Q. Rock-core scale modeling of initial water saturation effects on CO2 breakthrough pressure in CO2 geo-sequestration[J]. Journal of Hydrology, 2020, 580: 124234. doi: 10.1016/j.jhydrol.2019.124234
    [23] 国家能源局. SY/T 5748-2013岩石气体突破压力测定方法[S]. 北京: 石油工业出版社, 2014.

    National Energy Administration. SY/T 5748-2013 Determination method of gas breakthrough pressure in rock[S]. Beijing: Petroleum industry press, 2014(in Chinese with English abstract).
    [24] 李铱. CO2地质储存中残余水形成过程研究[D]. 北京: 中国地质大学(北京), 2013.

    Li Y. Research on the formation of residual water in CO2 Geological storage[D]. Beijing: China University of Geosciences(Beijing), 2013(in Chinese with English abstract).
    [25] 李铱, 李旭峰, 沈照理, 等. CO2地质封存室内实验中盐水种类对残余水形成的影响[J]. 地学前缘, 2015, 22(4): 312-319. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201504035.htm

    Li Y, Li X F, Shen Z L, et al. The effects of brine species on the formation of residual water in laboratory experiments of CO2 geological storage[J]. Earth Science Frontiers, 2015, 22(4): 312-319(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201504035.htm
    [26] Zhao Y, Xia L, Zhang Q, et al. The influence of water saturation on permeability of lowpermeability sandstone[J]. Earth and Planetary Science, 2017, 17: 861-864. doi: 10.1016/j.proeps.2017.01.042
    [27] Ren Q, Chen G, Yan W, et al. Interfacial tension of (CO2+CH4)+water from 298 K to 373 K and pressures up to 30 MPa[J]. Journal of Chemical and Engineering Data, 2000, 45: 610-612. doi: 10.1021/je990301s
    [28] 李铱. CO2-盐水-岩石系统中残余水形成机制研究[D]. 北京: 中国地质大学(北京), 2016.

    Li Y. Study on the formation mechanisms of residual water in CO2-brine-rock systems[D]. Beijing: China University of Geosciences(Beijing), 2016(in Chinese with English abstract).
    [29] AZ-AI-Yaseri, Hamid R, Maxim L. et al. Dependence of quartz wettability on fluid density[J]. Geophysical Research Letters, 2016, 43(8): 3771-3776. doi: 10.1002/2016GL068278
    [30] Pan B, Li Y, Xie L, et al. Role of fluid density on quartz wettability[J]. Journal of Petroleum Science and Engineering, 2019, 172: 511-516. doi: 10.1016/j.petrol.2018.09.088
    [31] Garcia R, Osborne K, Subashi E. Validity of the "sharp-kink approximation" for water and other fluids[J]. Journal of Physical Chemistry, 2009, 113(23): 8199-8199. doi: 10.1021/jp903787d
    [32] Gatica S M, Johnson J K, Zhao X C. et al, Wetting transition of water on graphite and other surfaces[J]. Journal of Physical Chemistry B, 2004, 108(31): 11704-11708. doi: 10.1021/jp048509u
    [33] Randive P, Dalal A. Influence of viscosity ratio and wettability on droplet displacement behavior: A mesoscale analysis[J]. Computers Fluids, 2014, 102: 15-31. doi: 10.1016/j.compfluid.2014.06.021
    [34] 王梦婷. 咸水层封存条件下CO2-盐水界面张力实验研究[D]. 大连: 大连理工大学, 2016.

    Wang M T. Experimental study on the interfacial tension of CO2-brine system under saline aquifer sequestration conditions[D]. Dalian: Dalian University of Technology, 2016(in Chinese with English abstract).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  743
  • PDF下载量:  585
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-30

目录

    /

    返回文章
    返回