留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渝东石柱地区龙马溪组页岩纤维状脉体成因

黄伟林 冯明友 刘小洪 陈波 郑江 刘田

黄伟林, 冯明友, 刘小洪, 陈波, 郑江, 刘田. 渝东石柱地区龙马溪组页岩纤维状脉体成因[J]. 地质科技通报, 2020, 39(3): 160-169. doi: 10.19509/j.cnki.dzkq.2020.0317
引用本文: 黄伟林, 冯明友, 刘小洪, 陈波, 郑江, 刘田. 渝东石柱地区龙马溪组页岩纤维状脉体成因[J]. 地质科技通报, 2020, 39(3): 160-169. doi: 10.19509/j.cnki.dzkq.2020.0317
Huang Weilin, Feng Mingyou, Liu Xiaohong, Chen Bo, Zheng Jiang, Liu Tian. Genesis of fibrous veins in the shales of Longmaxi Formation in Shizhu area, Eastern Chongqing[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 160-169. doi: 10.19509/j.cnki.dzkq.2020.0317
Citation: Huang Weilin, Feng Mingyou, Liu Xiaohong, Chen Bo, Zheng Jiang, Liu Tian. Genesis of fibrous veins in the shales of Longmaxi Formation in Shizhu area, Eastern Chongqing[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 160-169. doi: 10.19509/j.cnki.dzkq.2020.0317

渝东石柱地区龙马溪组页岩纤维状脉体成因

doi: 10.19509/j.cnki.dzkq.2020.0317
基金项目: 

国家自然科学基金重大项目 41390451-2

四川省教育厅项目 16ZB0089

天然气地质四川省重点实验室项目 2015trqdz01

详细信息
    作者简介:

    黄伟林(1993-), 男, 现攻读地质学专业硕士学位, 主要从事储层地质及非常规油气地质研究。E-mail:wl92jt19@163.com

    通讯作者:

    刘小洪(1980-), 女, 副教授, 主要从事成岩作用及非常规油气地质研究。E-mail:19441166@qq.com

  • 中图分类号: P618.12

Genesis of fibrous veins in the shales of Longmaxi Formation in Shizhu area, Eastern Chongqing

  • 摘要: 渝东石柱地区志留系龙马溪组页岩地层发育特殊的纤维状方解石脉体。为揭示其流体来源及形成机理,结合岩石学及地球化学特征等开展系统分析。研究表明,纤维状方解石脉(FCV)以顺层或近平行层面充填于黑色粉砂质页岩和泥质粉砂岩微裂缝中,脉体宽0.1~4.0 cm、横向延伸一般为0.5~8.0 m。纤维状方解石晶体以柱状、纤维状垂直裂缝壁生长为主,多与石英共生产出。晶体表面洁净,局部见方解石压力影、机械双晶及晶体间锯齿状晶界。阴极发光下纤维状方解石呈暗红色-橘红色;碳-氧同位素分析表明δ13CPDB略偏负、δ18OPDB负异常明显(δ13CPDBδ18OPDB平均值分别为-1.549‰及-12.654‰),指示其形成过程中受温度升高影响明显;流体包裹体均一温度平均值为159.5℃。结合区域构造-热演化史分析,结果表明石柱地区龙马溪组FCV形成流体具造山带同构造期超高压有机流体性质特征,为中-晚三叠世印支期同构造作用驱动深部流体叠加生烃超高压释放导致水力压裂所致,裂缝的开启导致孔隙流体的过饱和及纤维状方解石的快速沉淀。

     

  • 图 1  渝东石柱地区构造示意图(A)、取样位置地质简图(B)及龙马溪组地层柱状图(C)

    Figure 1.  Structural schematic diagram (A), simplified geological map showing the position of sampling section (B) and simplified stratum column of the Lower Silurian Longmaxi Formation in Shizhu area, Eastern Chongqing (C)

    图 2  渝东石柱漆辽地区龙马溪组纤维状方解石脉宏观照片

    A.粉砂质页岩中重晶石结核(Bc)及纤维状方解石脉(FCV)发育;B.条带状方解石脉轻微变形,宽2~3 cm;C.低角度方解石脉,宽0.1~4 cm均可见;D.顺层方解石脉,脉体遭受挤压变形;E.页岩中纤维状方解石脉发育,富含各类笔石化石(箭头所指);F.页岩中纤维状方解石脉及黄铁矿(Py)近平行层面发育,被黄铁矿分割成透镜状

    Figure 2.  Macro-photographs for fibrous calcite veins in the shales of Longmaxi Formation in Qiliao, Shizhu area, Eastern Chongqing

    图 3  石柱漆辽地区龙马溪组纤维状方解石脉显微特征

    A.围岩及纤维状方解石脉体,脉体以垂直围岩(WR)生长方式为主,单偏光;B.围岩(砂质页岩)及纤维状方解石脉体充填物,脉体被石英(Qz)、方解石(Cal)及黄铁矿(Py)全充填;C.沿围岩黄铁矿底质向上依次发育微晶方解石、白云石、粒状方解石及纤维状方解石-石英,单偏光;D.沿围岩底质向上发育纤维状方解石与石英共生矿物,正交偏光;E.纤维状方解石脉体中矿物充填序列:黄铁矿-纤维状石英+方解石,SEM;F.纤维状方解石及自形立方体状黄铁矿,SEM;G.纤维状方解石中石英及方解石压力影、机械双晶及晶体间的锯齿状晶界,正交偏光;H.纤维状方解石全貌,单偏光;J.H对应的阴极发光照片,围岩及裂缝中的石英不发光,纤维状方解石发橘红-暗红色光

    Figure 3.  Micro-photographs for fibrous calcite veins in the shales of Longmaxi Formation in Qiliao, Shizhu area

    图 4  研究区龙马溪组纤维状方解石脉中充填物包裹体特征(A, B)及均一温度直方图(C)

    Figure 4.  Micro- and fluorescent photograph (A, B) and corresponding homo-temperature histograms (C) of fluid inclusion for FCV in Longmaxi Formation in the study area

    图 5  渝东石柱漆辽地区纤维状方解石脉简图(a)及碳-氧同位素(b,c)变化关系图

    FCV.纤维状方解石脉; WR.围岩; C1.微晶方解石; C2.中-粗晶粒状方解石

    Figure 5.  Diagrammatic sketch (a) and corresponding C-O stable isotope values (b, c) for samples of fibrous calcite veins in Longmaxi Formation in Qiliao, Shizhu area, Eastern Chongqing

    图 6  渝东石柱地区志留世龙马溪组埋藏史-热史及裂缝充填对应时期示意图(据文献[31]修改)

    Figure 6.  Burial-thermal history plots and schematic for correspondingly formation time of FCV in Silurian Longmaxi Formation in Shizhu area, Eastern Chongqing

    表  1  研究区龙马溪组纤维状方解石脉及围岩部分矿物成分特征、碳氧同位素特征及其成脉温度

    Table  1.   Mineral composition characteristics, carbon and oxygen isotope characteristics and vein forming temperature of fibrous calcite veins and surrounding rocks in Longmaxi Formation in the study area

    取样位置 样品号 矿物成分wB/% C-O同位素/‰ 包裹体特征
    FeO MnO SrO δ13CPDB δ18OPDB Th/℃
    C1 SP-1 0.934 0.148 0.051 0.814 -8.345
    SP-2 0.668 0.045 0.061 0.868 -8.672
    0.630 0.070 0.027
    C2 SP-3 0.595 0.079 0.053 -1.356 -11.873 106.4, 120.1
    SP-4 0.530 0.202 0.104 -1.228 -12.000 107.4, 106.1, 118.0
    0.475 0.175 0.265
    FCV SP-5 0.370 0.097 0.484 -1.652 -13.106 141.5, 186.7
    0.549 0.383 0.335
    0.640 0.298 0.250
    SP-6 0.683 0.381 0.318 -1.526 -12.765 143.8, 165.8, 166.4
    0.841 0.394 0.364
    0.651 0.386 0.416
    SP-7 0.752 0.354 0.333 -1.534 -12.218 140.2, 145.2, 167.4, 161.5, 156.6
    0.728 0.195 0.448
    0.591 0.231 0.509
    SP-8 0.582 0.221 0.426 -1.485 -12.527 154.6, 184.6
    0.500 0.184 0.567
    0.514 0.193 0.254
    取样位置 样品号 矿物成分wB/% C-O同位素/‰ 包裹体特征
    TFe2O3 MnO SrO δ13CPDB δ18OPDB Th/℃
    WR SP-9 1.730 0.018 0.023 0.684 -7.468
    SP-10 5.580 0.032 0.016 0.712 -7.325
    注:-表示未检测;FCV.纤维状方解石脉; WR.围岩; C1.微晶方解石; C2.中-粗晶粒状方解石
    下载: 导出CSV
  • [1] Al-Aasm I S, Coniglio M, Desrochers A.Formation of complex fibrous calcite veins in Upper Triassic strata of Wrangellia Terrain, British Columbia, Canada[J].Sedimentary Geology, 1995, 100(1):83-95. http://www.sciencedirect.com/science/article/pii/0037073895001042
    [2] Machel H G.Fibrous gypsum and fibrous anhydrite in veins[J].Sedimentology, 2010, 32(3):443-454. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-3091.1986.tb00766.x
    [3] Sorby H C.On the structures produced by the currents present during the deposition of stratified rocks[J].The Geologist, 1859, 2(4):137-147. doi: 10.1017/S1359465600021122
    [4] Tarr W A.Cone-in-cone[J].American Journal of Science, 1922, 4:199-213.
    [5] Passchier C W, Trouw R A J.Microtectonics[M].Berlin:Springer-Verlag Berlin Heidelberg, 1998.
    [6] Marshall J D.Isotopic composition of displacive fibrous calcite veins:Reversals in pore-water composition trends during burial diagenesis[J].Journal of Sedimentary Research, 1982, 52(2):615-630. http://www.researchgate.net/publication/279700259_Isotopic_Composition_of_Displacive_Fibrous_Calcite_Veins_Reversals_In_Pore-water_Composition_Trends_During_Burial_Diagenesis
    [7] Barker S L L, Cox S F, Eggins S M, et al.Microchemical evidence for episodic growth of antitaxial veins during fracture-controlled fluid flow[J].Earth and Planetary Science Letters, 2006, 250(1):331-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=30470a6321611d998505bd645590e764
    [8] Kowal-Linka M.Origin of cone-in-cone calcite veins during calcitization of dolomites and their subsequent diagenesis:A case study from the Gogolin Formation (Middle Triassic), SW Poland[J].Sedimentary Geology, 2010, 224(1):54-64. http://www.sciencedirect.com/science/article/pii/S0037073809002966
    [9] Bons P D, Elburg M A, Gomez-Rivas E.A review of the formation of tectonic veins and their microstructures[J].Journal of Structural Geology, 2012, 43(43):33-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41307a32bc3d8ee619cab40dff03c1e8
    [10] Cobbold P R, Zanella A, Rodrigues N, et al.Bedding-parallel fibrous veins (beef and cone-in-cone):Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization[J].Marine and Petroleum Geology, 2013, 43(4):1-20. http://www.sciencedirect.com/science/article/pii/S0264817213000299
    [11] Kiriakoulakis K, Marshall J D, Wolff G A.Biomarkers in a Lower Jurassic concretion from Dorset (UK)[J].Journal of the Geological Society, 2000, 157(1):207-220. doi: 10.1144/jgs.157.1.207
    [12] Katrin H, Sylvain R, Daniel B, et al.Biogeochemical formation of calyx-shaped carbonate crystal fans in the subsurface of the Early Triassic seafloor[J].Gondwana Research, 2015, 27(2):840-861. doi: 10.1016/j.gr.2013.11.004
    [13] Tribovillard N, Petit A, Quijada M, et al.A genetic link between synsedimentary tectonics-expelled fluids, microbial sulfate reduction and cone-in-cone structures[J].Marine and Petroleum Geology, 2018, 93:437-450. doi: 10.1016/j.marpetgeo.2018.03.024
    [14] Meng Q, Hooker J, Cartwright J.Displacive widening of calcite veins in shale:Insights into the force of crystallization[J].Journal of Sedimentary Research, 2018, 88(3):327-343. doi: 10.2110/jsr.2018.18
    [15] Stoneley.Fibrous calcite veins, overpressures, and primary oil migration[J].AAPG Bulletin, 1983, 67:1427-1428. http://www.researchgate.net/publication/236551946_Fibrous_calcite_veins_overpressures_and_primary_oil_migration
    [16] Jochum J, Friedrich G, Leythaeuser D, et al.Hydrocarbon-bearing fluid inclusions in calcite-filled horizontal fractures from mature Posidonia Shale (Hils Syncline, NW Germany)[J].Ore Geology Reviews, 1995, 9(5):363-370. doi: 10.1016/0169-1368(94)00019-K
    [17] Conybeare D M, Shaw H F.Fracturing, overpressure release, and carbonate cementation in the Everest Complex, North Sea[J].Clay Minerals, 2000, 35(1):135-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1180/000985500546530
    [18] Parnell J, Honghan C, Middleton D, et al.Significance of fibrous mineral veins in hydrocarbon migration:Fluid inclusion studies[J].Journal of Geochemical Exploration, 2000, 69/70:623-627. doi: 10.1016/S0375-6742(00)00040-6
    [19] Hilgers C, Koehn D, Bons P D, et al.Development of crystal morphology during unitaxial growth in a progressively widening vein:Ⅱ.Numerical simulations of the evolution of antitaxial fibrous veins[J].Journal of Structural Geology, 2001, 23(6):873-885.
    [20] Hilgers C, Urai J L.Microstructural observations on natural syntectonic fibrous veins:Implications for the growth process[J].Tectonophysics, 2002, 352(3):257-274.
    [21] Meng Q, Hooker J, Cartwright J.Early overpressuring in organic-rich shales during burial:Evidence from fibrous calcite veins in the Lower Jurassic Shales-with-Beef Member in the Wessex Basin, UK[J].Journal of the Geological Society, 2017, 174(5):869-882. doi: 10.1144/jgs2016-146
    [22] MacKenzie W S.Fibrous calcite, a middle devonian geologic marker, with stratigraphic significance, district of Mackenzie, Northwest Territories[J].Canadian Journal of Earth Sciences, 1972, 9(11):1431-1440. doi: 10.1139/e72-127
    [23] 邹玉涛, 段金宝, 赵艳军, 等.川东高陡断褶带构造特征及其演化[J].地质学报, 2015, 89(11):2046-2052. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201511015
    [24] 盛贤才, 王韶华, 文可东, 等.鄂西渝东地区石柱古隆起构造沉积演化[J].海相油气地质, 2004, 9(1):43-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz200401005
    [25] 石红才, 施小斌, 杨小秋, 等.鄂西渝东方斗山-石柱褶皱带中新生代隆升剥蚀过程及构造意义[J].地球物理学进展, 2011, 26(6):1993-2002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201106013
    [26] 张春明, 姜在兴, 郭英海, 等.川东南-黔北地区龙马溪组地球化学特征与古环境恢复[J].地质科技情报, 2013, 32(2):124-130. http://www.cqvip.com/QK/93477A/20132/45438898.html
    [27] 牟传龙, 周恳恳, 梁薇, 等.中上扬子地区早古生代烃源岩沉积环境与油气勘探[J].地质学报, 2011, 85(4):526-532. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201104008
    [28] 牟传龙, 葛祥英, 许效松, 等.中上扬子地区晚奥陶世岩相古地理及其油气地质意义[J].古地理学报, 2014, 16(4):427-440. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201404001
    [29] 朱逸青, 王兴志, 冯明友, 等.川东地区下古生界五峰组-龙马溪组页岩岩相划分及其与储层关系[J].岩性油气藏, 2016, 28(5):59-66. http://d.wanfangdata.com.cn/Periodical/yxyqc201605007
    [30] 卢庆治, 马永生, 郭彤楼, 等.鄂西-渝东地区热史恢复及烃源岩成烃史[J].地质科学, 2007, 42(1):189-198. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200701016
    [31] 刘进.鄂西渝东地区中、古生界古地热场演化及有机质成熟史研究[D].武汉: 中国地质大学(武汉), 2008.
    [32] 曹环宇, 朱传庆, 邱楠生.川东地区下志留统龙马溪组热演化[J].地球科学与环境学报, 2015, 37(6):22-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201506003
    [33] Slater D J, Yardley B W D, Spiro B, et al.Incipient metamorphism and deformation in the Variscides of SW Dyfed, Wales:First steps towards isotopic equilibrium[J].Journal of Metamorphic Geology, 2010, 12(3):237-248. http://www.onacademic.com/detail/journal_1000034680479010_e647.html
    [34] Cartwright I, Power W L, Oliver N H S, et al.Fluid migration and vein formation during deformation and greenschist facies metamorphism at Ormiston Gorge, central Australia[J].Journal of Metamorphic Geology, 1994, 12(4):373-386. doi: 10.1111/j.1525-1314.1994.tb00030.x
    [35] 冯明友, 郑江, 刘田, 等.川北地区寒武系筇竹寺组钙质结核裂缝充填物特征及指示意义[J].地质论评, 2018, 64(3):193-204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201803018
    [36] Elburg M A, Bons P D, Foden J, et al.The origin of fibrous veins:constraints from geochemistry[J].Geological Society London Special Publications, 2002, 200(1):103-118. doi: 10.1144/GSL.SP.2001.200.01.07
    [37] Hilgers C, Sindern S.Textural and isotopic evidence on the fluid source and transport mechanism of antitaxial fibrous microstructures from the Alps and the Appalachians[J].Geofluids, 2010, 5(4):239-250. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1468-8123.2005.00114.x
    [38] Sharp Z D, Kirschner D L.Quartz-calcite oxygen isotope thermometry:A calibration based on natural isotopic variations[J].Geochimica et Cosmochimica Acta, 1994, 58(20):4491-4501. doi: 10.1016/0016-7037(94)90350-6
    [39] 王大锐.油气稳定同位素地球化学[M].北京:石油工业出版社, 2000.
    [40] Hudson J D.Stable isotopes and limestone lithifications[J].Journal of the Geological Society:London, 1977, 133(6):637-660. doi: 10.1144/gsjgs.133.6.0637
    [41] Prosser D J, Fallick A E, Daws J A, et al.Geochemistry and diagenesis of stratabound calcite cement layers within the rannoch formation of the brent group, murchison field, north viking graben (northern north sea)-reply[J].Sedimentary Geology, 1993, 87(3/4):139-164. http://www.sciencedirect.com/science/article/pii/003707389390002M
    [42] Sass E, Bein A, Almogilabin A.Oxygen-isotope composition of diagenetic calcite in organic-rich rocks:Evidence for 18O depletion in marine anaerobic pore water[J].Geology:United States, 1991, 19(8):839-842. http://adsabs.harvard.edu/abs/1991Geo....19..839S
    [43] 朱清波, 杨坤光.九江-瑞昌地区盖层滑脱断裂流体特征及其地质意义[J].地质科技情报, 2014, 33(6):46-54. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201406007.htm
    [44] 魏肖, 金爱民, 朱蓉, 等.黔南黄平凹陷及周缘古流体特征及其对油气保存的指示[J].地质科技情报, 2018, 37(3):73-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201803009
    [45] 韩永辉, 吴春生.四川盆地地温梯度及几个深井的热流值[J].石油与天然气地质, 1993, 14(1):80-84. http://www.cqvip.com/Main/Detail.aspx?id=1162743
    [46] 徐明, 朱传庆, 田云涛, 等.四川盆地钻孔温度测量及现今地热特[J].地球物理学报, 2011, 54(4):1052-1060. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201104020
    [47] Goldstein R H.Fluid inclusions in sedimentary and diagenetic systems[J].Lithos, 2001, 55(1):159-193. http://www.onacademic.com/detail/journal_1000035102221910_aa54.html
    [48] Fischer M P, Higueradiaz I C, Evans M A, et al.Fracture-controlled paleohydrology in a map-scale detachment fold:Insights from the analysis of fluid inclusions in calcite and quartz veins[J].Journal of Structural Geology, 2009, 31(12):1490-1510. doi: 10.1016/j.jsg.2009.09.004
    [49] Wiltschko D V, Morse J W.Crystallization pressure versus "crack seal" as the mechanism for banded veins[J].Geology, 2001, 29(1):79-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=57300467eefa4b95abfbe73414ac862a
    [50] Wiltschko D V, Lambert G R, Lamb W.Conditions during syntectonic vein formation in the footwall of the Absaroka Thrust Fault, Idaho-Wyoming-Utah fold and thrust belt[J].Journal of Structural Geology, 2009, 31(9):1039-1057. doi: 10.1016/j.jsg.2009.03.009
    [51] Hilgers C, Urai J L.On the arrangement of solid inclusions in fibrous veins and the role of the crack-seal mechanism[J].Journal of Structural Geology, 2005, 27(3):481-494. doi: 10.1016/j.jsg.2004.10.012
    [52] Goldstein A, Selleck B, Valley J W.Pressure, temperature, and composition history of syntectonic?uids in a low-grade metamorphic terrane[J].Geological, 2005, 33(5):421-424. http://dialnet.unirioja.es/servlet/articulo?codigo=1164779
    [53] Zanella A, Cobbold P R, Rojas L.Beef veins and thrust detachments in Early Cretaceous source rocks, foothills of Magallanes-Austral Basin, southern Chile and Argentina:Structural evidence for fluid overpressure during hydrocarbon maturation[J].Marine and Petroleum Geology, 2014, 55:250-261. doi: 10.1016/j.marpetgeo.2013.10.006
    [54] 胡迪, 沈传波, 刘泽阳.川东北地区埋藏-剥露历史分析:来自盆地模拟和热年代的制约[J].大地构造与成矿学, 2016, 40(6):1145-1153. http://d.wanfangdata.com.cn/Periodical/ddgzyckx201606004
    [55] Vrolijk P.Tectonically driven fluid flow in the Kodiak accretionary complex, Alaska[J].Geology, 1987, 15(5):466-469. doi: 10.1130/0091-7613(1987)15<466:TDFFIT>2.0.CO;2
    [56] Nuriel P, Weinberger R, Rosenbaum G, et al.Timing and mechanism of late-Pleistocene calcite vein formation across the Dead Sea Fault Zone, northern Israel[J].Journal of Structural Geology, 2012, 36(2):43-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88122fa145f65232c53666ca77e6897b
    [57] Kirschner D L, Masson H, Sharp Z D.Fluid migration through thrust faults in the Helvetic nappes (Western Swiss Alps)[J].Contributions to Mineralogy and Petrology, 1999, 136(1/2):169-183. doi: 10.1007/s004100050530
    [58] 李荣西, 董树文, 丁磊, 等.构造驱动大巴山前陆烃类流体排泄:含烃包裹体纤维状方解石脉证据[J].沉积学报, 2013, 31(3):516-526. http://d.wanfangdata.com.cn/Periodical/cjxb201303015
    [59] 张艳妮, 李荣西, 刘海青.纤维状方解石脉与构造流体研究[J].地质科技情报, 2014, 33(4):12-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201404003
    [60] Mccuaig T C, Kerrich R.P-T-t-deformation-fluid characteristics of lode gold deposits:evidence from alteration systematics[J].Ore Geology Reviews, 1998, 12(6):381-453. http://www.sciencedirect.com/science/article/pii/S0169136898800024
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  488
  • PDF下载量:  527
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-14

目录

    /

    返回文章
    返回