Ore-forming fluid characteristics and metallogenic mechanism of Fenghuang Pb-Zn deposit, Hunan Province
-
摘要: 扬子地块东南缘是我国重要的铅锌成矿带,而其中凤凰矿田尚缺系统研究。以凤凰铅锌矿床为研究对象,运用流体包裹体地质学、同位素地球化学以及显微激光拉曼光谱等方法对成矿流体特征、流体来源及流体成分开展了系统研究。结果表明:矿床中闪锌矿和与成矿有关的脉石矿物中流体包裹体较发育;包裹体主要为气液两相,其均一温度介于111.2~177℃,盐度介于4.1%~25.2%,密度介于0.98~1.09 g/cm3,总体为低温、中高盐度、中等密度流体;石英、闪锌矿中单个包裹体成分拉曼光谱测试结果表明,气液两相包裹体中气相成分主要为CH4,液相主要为H2O,纯气相包裹体主要成分为CH4;H-O同位素分析结果表明,成矿流体主要为建造水,表明来自盆地中的建造水萃取了深部地层中的成矿物质,并与沉积物中有机物干馏作用产生的CH4等一起形成还原性成矿流体,沿同生断裂构造等通道向上运移,铅锌等成矿物质在浅部敖溪组白云岩中沉淀成矿。Abstract: The southeastern margin of the Yangtze block is an important Pb-Zn metallogenic belt in China, however, the systematical research of Fenghuang ore field is still in progress. Taking the deposit as the research object, the characteristics, source and composition of ore-forming fluid were studied by means of fluid inclusion geology, isotope geochemistry and micro-laser Raman spectroscopy. The results show that LV type fluid inclusions are well developed in the deposit. The homogenization temperature, salinity and density are between 111.2-177℃, 4.1%-25.2%, and 0.98-1.09 g/cm3 respectively. Generally, it is a low-temperature, medium-high salinity and medium-density fluid. The gas phase composition of the inclusions in quartz and sphalerite is mainly CH4, and the liquid phase is mainly H2O. The results of H-O isotope analysis show that the ore-forming fluid is mainly formation-water. It is considered that the formation-water from the basin extracts the ore-forming materials in the deep strata, forming reducing ore-forming fluid together with CH4 and other reducing agents produced by organic matter retorting in the sediments, and moves upward along the contemporaneous fault structure and other channels. Finally, lead and zinc precipitate in the dolomite of the shallow Aoxi formation.
-
Key words:
- ore-forming fluid /
- metallogenic mechanism /
- MVT type /
- Fenghuang Pb-Zn deposit
-
图 1 区域地质简图(据文献[7]修改)
K.白垩系;S-J.志留系-侏罗系;Nh-O.志华系-奥陶系;Qb.青白口系;ηγ.二长花岗岩;1.背斜;2.断层及编号; 3.不整合界线;4.城镇;F1.花垣-张家界断裂;F2.张家界-麻粟场断裂;F3.吉首-古丈断裂;F4.沅江-麻阳-芷江断裂
Figure 1. Regional geological map
图 2 茶田矿区地质简图(据文献[19]修改)
Figure 2. Geological map of Chatian mining area
图 3 凤凰铅锌矿8勘探线剖面图(据文献[21]修改)
Figure 3. Profile of exploration line 8 in Fenghuang lead zinc mine
图 11 凤凰铅锌矿成矿流体均一温度-盐度协变关系图(底图据文献[26])
Figure 11. Th-w(NaCl) covariant diagram for fore-forming fluid in Fenghuang Pb-Zn deposit
Table 1. Mineral formation sequence of Fenghuang lead-zinc deposit
矿物名称 金属硫化物-石英-方解石阶段 石英-方解石阶段 黄铁矿 方解石 闪锌矿 石英 黄铜矿 方铅矿 辰砂 白云石 注:黑色柱条长短代表矿物的存续期 表 2 流体包裹体研究样品信息一览表
Table 2. Information of fluid inclusion study samples
分析项目 样品编号 样品名称 成矿阶段 δD-δ18O LD11-01 方解石 第一阶段 FH-01 第二阶段 FH-03 第一阶段 FH-04 第二阶段 FI热力学特征 FH-01-1 石英方解石脉 第二阶段 ZH801-1 闪锌矿矿石 第一阶段 ZH801-2 石英方解石脉 第二阶段 拉曼成分 LD2-01 脉状矿石 第一阶段 LD2-02 脉状矿石 第一阶段 LD2-04 石英闪锌矿脉状矿石 第一阶段 LD2-05 团块状闪锌矿矿石 第一阶段 表 3 凤凰铅锌矿流体包裹体热力学参数
Table 3. Thermodynamic parameters of fluid inclusions in Fenghuang Pb-Zn deposit
成矿阶段 第一成矿阶段 第二成矿阶段 主矿物 闪锌矿 方解石 方解石 石英 类型 L+V L+V 冰点/℃ -16.2~ -16.2~ -2.8~ -4~ -3.6 -3.6 -14.1 -19.8 均一温度/℃ 132.6~ 111.2~ 121.6~ 103.2~ 177.0 143.1 145.7 193.2 均一状态 L L 盐度w(NaCl)/% 21.1~ 5.9~ 4.1~ 6.4~ 25.2 19.6 17.9 22.5 密度/(g·cm-3) 1.01~ 0.98~ 0.99~ 1.09 1.07 1.07 包裹体个数/个 16 25 14 21 注:L.液相;V.气相 表 4 流体包裹体成分拉曼光谱测试结果
Table 4. Results of Raman spectra of fluid inclusions
样号 分析号 包裹体类型 液相成分 FI气相成分 CO2 N2 CH4 成分 峰位移/cm-1 峰位移/cm-1 φB/% 峰位移/cm-1 φB/% 峰位移/cm-1 φB/% ZK801-01 ZK801-01AV L+V 1 386, 1 283 1 2 325 5 2 910 94 ZK801-01BL L+V H2O 3 450 ZK801-01CV L+V 2 916 LD2-01 L+V LD2-01BL H2O 3 421 LD2-01BV 2 916 LD2-01DV L+V 2 912 LD2-02 LD2-02AL L+V H2O 3 428 LD2-02AV 2 912 LD2-02BV L+V 2 911 LD2-02DV L+V 2 913 LD2-04 LD2-04AL L+V H2O 3 425 LD2-04AV 2 914 LD2-04BL L+V H2O 3 436 LD2-04BV 2 913 LD2-04CV L+V 1 385, 1 283 6 2 328 1 2 912 93 LD2-04DV L+V 2 911 LD2-04EV L+V 1 387, 1 284 2 2 329 5 2 911 93 LD2-04FV L+V 2 912 LD2-05 LD2-05AV L+V 2 911 LD2-05BV L+V 2 912 LD2-05BL H2O 3 428 LD2-05CV L+V 2 911 LD2-05DV L+V 2 911 表 5 凤凰矿区成矿流体氢氧同位素组成
Table 5. Hydrogen and oxygen isotopic composition of ore-forming fluid in Fenghuang Pb-Zn deposit
样号 矿物 δDV-SMOW/‰ δOV-PDB/‰ δ18OV-SMOW/‰ δO水/‰ LD11-01 方解石 -68 -13.19 17.26 4.82 FH-01 方解石 -77 -15.16 15.23 2.79 FH-03 方解石 -78 -14.49 15.92 3.48 FH-04 方解石 -95 -14.32 16.1 3.66 -
[1] 刘文均, 卢家烂.湘西下寒武统有机地化特征:MVT铅锌矿床有机成矿作用研究(Ⅲ)[J].沉积学报, 2000, 18(2):290-296. [2] 刘文均, 郑荣才.花垣铅锌矿床成矿流体特征及动态[J].矿床地质, 2000, 19(2):173-181. [3] 王奖臻, 李朝阳, 李泽琴, 等.川滇地区密西西比河谷型铅锌矿床成矿地质背景及成因探讨[J].地质地球化学, 2001, 29(2):41-45. [4] 武俊婷, 李国猛, 李义邦, 等.川滇黔接壤区MVT铅锌矿床年代学研究进展及成矿构造背景[J].地质科技情报, 2019, 38(4):134-144. [5] 王奖臻, 李朝阳, 李泽琴, 等.川、滇、黔交界地区密西西比河谷型铅锌矿床与美国同类矿床的对比[J].矿物岩石地球化学通报, 2002, 21(2):127-132. [6] 芮宗瑶, 叶锦华, 张立生, 等.扬子克拉通周边及其隆起边缘的铅锌矿床[J].中国地质, 2004, 31(4):337-346. [7] 张长青, 毛景文, 刘峰, 等.云南会泽铅锌矿床黏土矿物K-Ar测年及其地质意义[J].矿床地质, 2005, 24(3):317-324. [8] 魏肖, 金爱民, 朱蓉, 等.黔南黄平凹陷及周缘古流体特征及其对油气保存的指示[J].地质科技情报, 2018, 37(3):67-74. [9] 段其发.湘西-鄂西地区震旦系-寒武系层控铅锌矿成矿规律研究[D].武汉: 中国地质大学, 2014. [10] 赵准.滇东-滇东北地区铅锌矿床的成矿模式[J].云南地质, 1995, 14(4):350-354. [11] 张海坤, 胡鹏, 鲁亮, 等.印度尼西亚戴里Sedex型铅锌矿集区成矿流体特征及成矿物质来源:流体包裹体及同位素地球化学证据[J].地质科技通报, 2020, 39(3):170-177. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10034.shtml [12] 齐文, 侯满堂, 王根宝.上扬子地台震旦系铅锌矿床类型及找矿方向[J].地球科学与环境学报, 2006, 28(2):30-36. [13] 杨绍祥, 劳可通.湘西北铅锌矿床碳氢氧同位素特征及成矿环境分析[J].矿床地质, 2007, 26(3):330-340. [14] 汤朝阳, 邓峰, 李堃, 等.湘西-黔东地区寒武系清虚洞组地层特征与铅锌成矿关系[J].中国地质, 2012, 39(4):1034-1041. [15] 雷义均, 戴平云, 段其发, 等.鄂西-湘西北地区铅锌矿矿源层对铅锌矿床产出定位的制约[J].桂林理工大学学报, 2013, 33(1):1-6. [16] 鲍珏敏, 万溶江, 鲍振襄.湘黔汞矿带相关成矿问题的讨论[J].北京地质, 1999, 11(2):6-13. [17] 张江晖, 徐守余, 蒋静, 等.含夹层碳酸盐岩储层裂缝发育规律研究[J].地质科技情报, 2019, 38(2):75-80. [18] 蔡应雄, 杨红梅, 段瑞春, 等.湘西、黔东下寒武统铅锌矿床流体包裹体和硫铅碳同位素地球化学特征[J].现代地质, 2014, 28(1):29-41. [19] 周云, 段其发, 曹亮, 等.湘西、鄂西地区铅锌矿的大范围低温流体成矿作用研究[J].高校地质学报, 2014, 20(2):198-212. [20] 徐怡然, 丁振举.湘西头坡脑汞锌矿成矿流体特征及地质意义[J].世界地质, 2018, 37(1):124-139. [21] 湖南省地质调查院.湖南花垣-凤凰地区铅锌矿调查报告[R].长沙: 湖南省地质调查院, 2011. [22] Hall D L, Sterner S M, Bodnar R J.Freezing point depression of NaCl-KCl-H2O solutions[J].Economic Geology, 1988, 83(1):197-202. [23] Clayton R N, O'Neil J R, Mayeda T K.Oxygen isotope exchange between quartz and water[J].Journal of Geophysical Research, 1972, 77(17):3057-3067. doi: 10.1029/JB077i017p03057 [24] 李葆华, 李雯霞, 顾雪祥, 等.贵州丹寨汞矿田甲烷包裹体研究及其地质意义[J].地学前缘, 2013, 20(1):55-63. [25] 李雯霞.贵州岩屋坪汞矿床有机流体成矿的包裹体证据[D].成都: 成都理工大学, 2013. [26] Wilkinson J J.Fluid inclusions in hydrothermal ore deposits[J].Lithos, 2001, 55(1/4):229-272. [27] Disnar J R, Sureau J F.Organic matter in ore genesis:Progress and perspectives[J].Organic Geochemistry, 1990, 16(1/3):577-599. [28] 朱弟成, 朱利东, 林丽, 等.西成矿田泥盆系铅锌矿床中的有机质成矿作用[J].地球科学:中国地质大学学报, 2003, 28(2):201-208. [29] 刘家军, 柳振江, 杨艳, 等.南秦岭大型钡成矿带有机地球化学特征与生物标志物研究[J].矿物岩石, 2007, 27(3):39-48. [30] 李艳军, 魏俊浩.铅锌矿床中微量元素富集及关键测试技术研究新进展[J].地质科技情报, 2014, 33(1):191-198. [31] Anderson G M. Organic maturation and ore precipitation in Southeast Missouri[J].Economic Geology, 1991, 86(5):909-926. doi: 10.2113/gsecongeo.86.5.909 [32] Leach D L, Sangster D F, Kelley K D, et al.Sediment-hosted lead-zinc deposits:A global- perspective[J].Economic Geology, 2005, 100:561-608. [33] 李荣西, 董树文, 张少妮, 等.大巴山造山过程有机流体研究[J].南京大学学报:自然科学版, 2012, 48(3):295-307. [34] 吴越, 张长青, 毛景文, 等.油气有机质与MVT铅锌矿床的成矿:以四川赤普铅锌矿为例[J].地球学报, 2013, 34(4):425-436. [35] 张长青.中国川滇黔交界地区密西西比型(MVT)铅锌矿床成矿模型[D].北京: 中国地质科学院矿产资源研究所, 2008. [36] 孙海清, 黄建中, 杜远生, 等.扬子地块东南缘南华系长安组同位素年龄及其意义[J].地质科技情报, 2014, 33(2):15-20, 27. [37] 刘劲松, 邹先武, 汤朝阳, 等.湘西黔东地区铅锌矿床与古油藏关系初探[J].华南地质与矿产, 2012, 28(3):20-225. -