Evaluation of susceptibility to karst collapse on both sides of the Yangtze River in Baishazhou, Wuhan and preventive measures in the process of metro construction
-
摘要: 近年来在武汉市城市工程建设过程中,岩溶塌陷时有发生,严重影响了城市建设发展和人民群众的生命财产安全。为查明岩溶区地面塌陷易发性分区情况并提出防治对策,以白沙洲岩溶条带长江两岸作为研究区,选择岩溶发育程度、土层厚度、土层结构、红层厚度、地下水水位波动、岩溶水水位波动部位、塌陷坑密度7个评价因子,采用层次分析法建立岩溶塌陷发育的多因子判别模型,并结合GIS空间分析技术将研究区划分出高、中等和低易发区域。针对区内地铁工程不同阶段特性及其位于不同的易发性区段,以地质结构为根据,提出了相应的防治对策和建议。结果表明:高易发区主要位于长江两岸覆盖型岩溶区,且多为含砂性土层;高易发区为防治的重点,规划阶段尽量回避此区,防治原则主要是阻止上覆砂颗粒的漏失。中等易发区防治原则是防止单一黏性土中土洞的形成和扩大及保护红层的完整性。低易发性区红层厚度大于工程施工进入基岩厚度,发生岩溶塌陷的可能性极小。本研究成果能为武汉长江两岸的工程建设提供参考。Abstract: In recent years, during urban engineering, there have been frequent karst collapses in Wuhan city, which seriously affects urban development and citizens security. In order to ascertain the susceptibility zone of ground collapse in karst area and put forward prevention measures, the Baishazhou karst belt along the Yangtze River is taken as the study area, and 7 indicators (karst development, soil thickness, soil structure, red-strata thickness, groundwater level fluctuations, karst water level fluctuation position and the density of collapse pit) are considered as evaluation factors. Based on this, a multi-factor discriminative model of karst collapse development is established employing analytic hierarchy process, and the study area is divided into different regions with high, medium and low susceptibility through GIS spatial analysis technology. Corresponding countermeasures and suggestion are proposed on the basis of geological structure for characteristics in different stages of the subway project in the region and their different sections of the susceptibility. The result shows high-susceptibility parts are mainly located in the covered karst area on both sides of the Yangtze River, and mostly contain sandy soil. High-susceptibility parts are the key of prevention and treatment, therefore, this area should be avoided during the planning phase, and the principle of prevention and control is mainly to prevent the leakage of the overlying sand particles. The principle of moderately susceptible zoning prevention is to prevent the formation and development of soil cavities in a single clay soil and to protect the integrity of the red layer. The thickness of the red layer for low susceptibility is greater than that of the engineering construction entering the bedrock, and the possibility of karst collapse is minimal. Our study can provide a reference for the constructions on the banks of the Yangtze River in Baishazhou, Wuhan.
-
Key words:
- Baishazhou belt /
- karst collapse /
- susceptibility /
- analytical hierarchy process /
- prevention measures
-
表 1 岩溶塌陷评估因子影响程度分级
Table 1. The classification table of influence degree of karst collapse assessment factors
评估指标 分级和取值 条件层 代号 因子层 代号 影响程度强 影响程度中 影响程度弱 3 2 1 岩溶发育 B1 岩溶发育程度 C11 强 中等 弱 盖层 B2 土层厚度/m C21 <10 [10,30] >30 土层结构 C22 ①黏性土+砂性土,底部为砂性土 ②黏性土+砂性土,底部为黏性土 ③单一黏性土层 红层厚度/m C23 0 [0, 10] >10 水文地质 B3 地下水水位波动幅度/m C31 >5 [2, 5] <2 岩溶水水位波动部位 C32 基岩面上下反复波动 基岩面以下波动 基岩面以上波动 已有塌陷 B4 塌陷坑密度/(个·10-1 km-2) C41 >10 [2, 10] <2 表 2 条件层B相对于目标层A的判断矩阵
Table 2. Judgment matrix of criterion layer B relative to target layer A
评价指标 B1 B2 B3 B4 岩溶发育条件B1 1 1/3 3 2 盖层发育条件B2 3 1 5 3 水文地质条件B3 1/3 1/5 1 1/2 已有塌陷情况B4 1/2 1/3 2 1 注:CI=0.001;CR=0.002<0.1,满足检验 表 3 因子层C2j相对于条件层B2的判断矩阵
Table 3. Judgment matrix of criterion layer B2 relative to target layer C2j
评价指标 C21 C22 C23 土层厚度C21 1 1/2 1/3 土层结构C22 2 1 1/2 红层厚度C23 3 2 1 注:CI=0.005;CR=0.005<0.1,满足检验 表 4 因子层C3j相对于条件层B3的判断矩阵
Table 4. Judgment matrix of criterion layer B3 relative to target layer C3j
评价指标 C31 C32 地下水水位波动幅度C31 1 1/3 岩溶水水位波动部位C32 3 1 表 5 判断矩阵评估因子权重
Table 5. Evaluation factors weight of comparison matrix
目标层 条件层 条件层权重值 因子层 因子权重值 岩溶塌陷 岩溶发育 0.239 岩溶发育程度 0.239 盖层发育 0.522 土层厚度 0.085 土层结构 0.155 红层厚度 0.282 水文地质 0.086 地下水水位波动幅度 0.022 岩溶水水位波动部位 0.064 已有塌陷 0.153 塌陷坑密度 0.153 表 6 综合指数模型易发性等级分级
Table 6. Comprehensive index model vulnerability rating table
等级 低易发区 中易发区 高易发区 综合指数 [0, 2.2) [2.2, 2.5] >2.5 -
[1] 蒙彦, 雷明堂.岩溶塌陷研究现状及趋势分析[J].中国岩溶, 2019, 38(3):411-417. [2] Day M J.An assessment of karstic collapse hazards at Mount rooser, Ewarton, Jamacia[J].America Society Civil Engineers, 2003, 122:40-49. http://www.mendeley.com/research/an-assessment-of-karstic-collapse-hazards-at-mount-rosser-ewarton-jamaica-1/ [3] 张发旺, 贾秀梅, 赵华.灰色统计方法及其在岩溶塌陷预测分析中的应用[J].河北地质学院学报, 1996(2):144-150. http://www.cqvip.com/qk/91301x/199602/2142465.html [4] Pavel M, Fannin R J, Nelson J D.Replication of a terrain stability mapping using an artificial neural network[J].Geomorphology, 2008, 97(3/4):356-373. [5] 陈学军, 陈植华, 陈先华, 等.桂林市西城区岩溶塌陷模糊层次综合预测[J].桂林工学院学报, 2000(2):112-116. [6] 陈明晓.岩溶覆盖层塌陷的原因分析及其半定量预测[J].岩石力学与工程学报, 2002(2):285-289. [7] 姜春露, 姜振泉.基于Fisher判别分析法的岩溶塌陷预测[J].地球科学与环境学报, 2012, 34(1):91-95. [8] 罗小杰, 罗程.覆盖型岩溶地面塌陷综合地质预测与危险性评估[J].中国岩溶, 2016, 35(1):51-59. http://www.cqvip.com/QK/95841X/201601/668857777.html [9] Panno S V, Kelly W R, Angel J C, et al.Hydrogeologic and topographic controls on evolution of karst features in Illinois' sinkhole plain[J].Carbonates Evaporites, 2013, 28(1/2):13-21. doi: 10.1007/s13146-013-0157-2 [10] Jiang F, Dai J, Lei M, et al.Experimental study on the critical triggering condition of soil failure in subsidence sinkholes[J].Environmental Earth Sciences, 2015, 74(1):693-701. doi: 10.1007/s12665-015-4074-7 [11] Bai H, Ma D, Chen Z.Mechanical behavior of groundwater seepage in karst collapse pillars[J].Engineering Geology, 2013, 164:101-106. doi: 10.1016/j.enggeo.2013.07.003 [12] 陈邦松.湖北省武汉市某区岩溶塌陷风险评价研究[D].北京: 中国地质大学(北京), 2015. [13] 贾晓青, 刘建, 罗明明, 等.基于改进的DRASTIC模型对香溪河典型岩溶流域地下水脆弱性评价[J].地质科技情报, 2019, 38(4):255-261. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201904027.htm [14] 杜浩, 汪洋, 周宏, 等.基于易发性评价的地质灾害利用区域选划研究[J].地质科技情报, 2018, 37(6):266-273. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201806034.htm [15] 王芳, 殷坤龙, 桂蕾, 等.不同日降雨工况下万州区滑坡灾害危险性分析[J].地质科技情报, 2018, 37(1):190-195, 203. [16] Yalcin A, Reis S, Aydinoglu A C, et al.A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey[J].Catena, 2011, 85(3):274-287. doi: 10.1016/j.catena.2011.01.014 [17] Roberto Salvati, Ira D Sasousky.Development of collapse sinkholes in areas of groundwater discharge[J].Journal of Hydrology, 2002, 264:1-11. doi: 10.1016/S0022-1694(02)00062-8 [18] 胡亚波, 刘广润, 肖尚德, 等.一种复合型岩溶地面塌陷的形成机理:以武汉市烽火村塌陷为例[J].地质科技情报, 2007, 26(1):96-100. http://www.cqvip.com/Main/Detail.aspx?id=23678108 [19] Katarina Z, Daniel H, Kronenfeld B, et al.Predicting sink hole susceptibility in Frederick Valley, Mary and using geographically weighted regression[C]//Anon.11th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst.:, 2008, 11: 243-255. [20] Waltham T, Bell F G, Culshaw M.Sinkholes and subsidence:Karst and cavernous rocks in engineering and construction[J].Speleogenesis & Evolution of Karst Aquifers, 2007, 13(2):142-143. [21] 罗小杰, 张恒, 沈建, 等.武汉地铁基坑岩土地质结构类型、支护和地下水治理措施[J].江汉大学学报:自然科学版, 2018, 46(4):337-351. [22] 樊永生, 李爱军, 汤江红.武昌倒口湖地区F地块岩溶特征、地面塌陷机理分析及治理措施[J].资源环境与工程, 2010, 24(4):394-397, 407. [23] 杨涛, 涂婧, 殷美, 等.武汉市岩溶塌陷分类及防治对策[J].资源环境与工程, 2013, 27(5):661-664. -