留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黔西赫章2.5 Ga石英二长闪长岩的发现及其地质意义

何良伦 刘雨 杨坤光 蔡京辰 王军 徐扬

何良伦, 刘雨, 杨坤光, 蔡京辰, 王军, 徐扬. 黔西赫章2.5 Ga石英二长闪长岩的发现及其地质意义[J]. 地质科技通报, 2020, 39(6): 30-42. doi: 10.19509/j.cnki.dzkq.2020.0615
引用本文: 何良伦, 刘雨, 杨坤光, 蔡京辰, 王军, 徐扬. 黔西赫章2.5 Ga石英二长闪长岩的发现及其地质意义[J]. 地质科技通报, 2020, 39(6): 30-42. doi: 10.19509/j.cnki.dzkq.2020.0615
He Lianglun, Liu Yu, Yang Kunguang, Cai Jingchen, Wang Jun, Xu Yang. Discovery of 2.5 Ga quartz monzodiorite and its geological significance in Hezhang, western Guizhou[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 30-42. doi: 10.19509/j.cnki.dzkq.2020.0615
Citation: He Lianglun, Liu Yu, Yang Kunguang, Cai Jingchen, Wang Jun, Xu Yang. Discovery of 2.5 Ga quartz monzodiorite and its geological significance in Hezhang, western Guizhou[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 30-42. doi: 10.19509/j.cnki.dzkq.2020.0615

黔西赫章2.5 Ga石英二长闪长岩的发现及其地质意义

doi: 10.19509/j.cnki.dzkq.2020.0615
基金项目: 

国家自然科学基金项目 41472190

贵州省科技计划项目 黔科合支撑[2019]2865号

贵州省地质矿产勘查开发局地质科研项目 黔地矿科合[2019]34号

中国地质调查局项目 DD2019057006

中国地质调查局项目 DD20190050

详细信息
    作者简介:

    何良伦(1983—), 男, 高级工程师, 主要从事地质矿产勘查研究工作。E-mail:330372697@qq.com

    通讯作者:

    杨坤光(1954—), 男, 教授, 博士生导师, 主要从事构造地质学研究工作。E-mail:yangkunguang@163.com

  • 中图分类号: P588.122

Discovery of 2.5 Ga quartz monzodiorite and its geological significance in Hezhang, western Guizhou

  • 摘要: 黔西位于扬子板块西南缘,有关扬子板块内约2.5 Ga的岩浆事件记录极少。最近,对黔西赫章发现的石英二长闪长岩的研究表明,其成岩年龄为(2 542±9)Ma,为该区首次发现的新太古代晚期岩石。该岩石主要由斜长石、碱性长石、石英、角闪石、黑云母等矿物组成,具有较高的SiO2(59.2%~60.6%)、Na2O(4.70%~4.85%)质量分数和Na2O/K2O(3.02%~3.19%)比值,以及较低的Al2O3(17.0%~17.7%)、MgO(2.42%~2.61%)质量分数。样品稀土元素总质量分数为120×10-6~221×10-6,(La/Yb)N=8.32~17.98,轻、重稀土元素分异不明显,表现为弱的右倾稀土元素配分模式,并具有弱的Eu负异常。在微量元素蛛网图上,样品富集大离子亲石元素(Ba、Sr)、亏损高场强元素(Nb、Ta、Ti),具有弱负到正的εHft)值(-0.51~+6.93)和正的εNdt)值(+0.22~+0.88),与太古宙低铝型高重稀土元素TTG的地球化学性质基本一致。综合研究显示,该岩石可能是在角闪岩相下,下地壳基性岩部分熔融形成的,源区残留相主要为金红石以及斜长石。黔西约2.5 Ga岩石的发现证实了扬子板块西南缘具有新太古代基底的存在,这为扬子周缘新太古代岩浆成因的碎屑锆石研究提供了依据,为扬子板块新太古代地壳演化提供了新的信息。

     

  • 图 1  研究区区域地质简图(据文献[18]修改)

    ①怒江断裂;②金沙江-红河断裂;③鲜水河断裂;④龙门山断裂;⑤小金河-中甸断裂;⑥箐河-程海断裂;⑦安宁河-绿汁江断裂;⑧小江断裂;⑨康定-奕良-水城断裂(紫云-垭都断裂);⑩弥勒-师宗-水城断裂

    Figure 1.  Regional geological map in the study area

    图 2  黔西地区石英二长闪长岩取样样品(a,b)及镜下显微照片(c,d)

    Figure 2.  Samples(a, b) and micrograph of minerals assemblage(c, d) of quartz monzodiorite in western Guizhou

    图 3  黔西地区石英二长闪长岩锆石阴极发光照片(红色代表结晶年龄;黄色代表锆石Hf同位素值)

    Figure 3.  CL images of typical zircon grains from the quartz monzodioritein the western Guizhou

    图 4  黔西石英二长闪长岩LA-ICP-MS锆石U-Pb年龄以及谐和图

    Figure 4.  LA-ICP-MS zircon U-Pb age and concordia diagrams of quartz monzodiorite in western Guizhou

    图 5  研究区岩石地球化学特征图解

    HKG.高钾花岗岩;TTG.英云闪长岩+奥长花岗岩+花岗闪长岩

    Figure 5.  Na2O+K2O-SiO2 diagram (a); A/NK-A/CNK diagram (b); An-Ab-Or diagram (c); K2O-SiO2 diagram[2](d); K2O-Na2O diagram[2](e); K2O-Al2O3 diagram[2](f)

    图 6  研究区样品球粒陨石标准化稀土元素配分图(a)及原始地幔标准化微量元素蜘蛛网图(b)

    a.球粒陨石标准化值引自文献[33],原始地幔标准化值引自文献[34]; b.低重稀土元素TTG和高重稀土元素TTG数据引自文献[32]

    Figure 6.  Chondrite-normalized REE patterns diagram (a) and primitive mantle-normalized spider diagram (b) for the samples in the study area

    图 7  黔西石英二长闪长岩εHf(t)值特征图

    Figure 7.  Zircon εHf(t) value of quartzdiorite in western Guizhou

    图 8  前寒武纪时期扬子西缘-北缘碎屑锆石年龄谱(据文献[35]修改)

    Figure 8.  Age spectrum of Precambrian detrital zircons from the western and northern margin of the Yangtze

    图 9  (Gd/Er)N-w(MgO)图解(a)与w(Al2O3)-w(SiO2)图解(b)[17]

    Figure 9.  (Gd/Er)N-MgO diagram (a) and Al2O3-SiO2 diagram (b)[17]

    表  1  黔西石英二长闪长岩u-Pb锆石年龄分析结果

    Table  1.   U-Pb data for zircons of quartz monzodiorite in western Guizhou

    测点号ThUTh/U同位素比值同位素年龄/Ma谐和度/%
    wB/10-6207Pb/206Pb±1σ207Pb/235U±1σ206pb/238U±1σ207Pb/206Pb207Pb/235Pb206pb/238U±1σ
    ZK3201-011972270. 870. 165 40.002 610.750 00. 203 60. 469 20. 006 32 52225. 92 50217. 72 48027. 599
    ZK3201-021962340. 840. 167 80.002 411.377 10. 172 80. 489 60.004 32 53518. 42 55514. 32 56918. 899
    ZK3201-03981690. 580.168 80. 002 212. 084 50. 176 80. 517 10. 005 32 54621. 92 61113. 82 68722. 697
    ZK3201-041041520. 680. 172 30. 002 511.127 30. 154 70. 466 40.003 62 58019. 42 53413. 12 46815. 797
    ZK3201-05861220. 710.172 00. 003 311.882 40.222 80. 498 90. 004 42 57731. 52 59517. 62 60919. 099
    ZK3201-061641880. 870. 170 30.002 511.327 40. 182 20. 479 60.004 62 56125.82 55015. 12 52620. 099
    ZK3201-071461730. 840. 170 20.002 311. 143 80.152 70.472 60. 003 82 56123. 62 53512. 92 49516. 798
    ZK3201-08861260. 680. 169 00. 002 311.235 90. 162 40.478 90.003 52 54823. 92 54313. 62 52215. 399
    ZK3201-09791190. 670. 169 60.002 411.601 00. 164 70.492 70. 003 62 55422. 72 57313. 42 58315. 899
    ZK3201-101151610. 720.167 90. 002 211. 145 00. 151 00. 478 10. 003 62 53722. 52 53512. 72 51915. 999
    ZK3201-11791830. 430. 184 50.002 712. 686 70.208 50. 494 70. 005 02 69424. 12 65715. 62 59121. 797
    ZK3201-12921440. 640. 169 00. 002 811.199 30.181 90. 477 20.004 12 54728. 22 54015. 22 51518. 199
    ZK3201-131071550. 690. 166 90.002 711.441 30. 179 10. 493 50.004 12 52726. 82 56014. 72 58617. 798
    ZK3201-141091520. 720.168 20. 002 511. 032 50. 163 70. 472 30. 003 62 54025. 32 52613. 92 49315. 998
    ZK3201-151401920. 730. 167 50. 002 410.986 00. 151 90.472 50.003 52 53323. 52 52213. 02 49415. 498
    ZK3201-161171590. 740. 168 50. 003 211.718 20. 266 50. 500 20. 006 22 54332. 62 58221. 42 61526. 898
    ZK3201-171632020. 810. 165 70.002 311.060 50. 155 70. 481 60.003 92 51524. 22 52813. 22 53417. 099
    ZK3201-181351790. 760. 167 30.002 610. 925 50.172 50.471 20. 004 12 53125. 52 51714. 82 48918. 098
    ZK3201-191181740. 680. 165 50. 002 611.122 90. 182 60. 485 00.004 22 51326. 12 53315. 42 54918. 499
    ZK3201-20661790. 370. 165 60.002 411.022 80. 155 70.480 30. 003 32 51419. 42 52513. 32 52914. 499
    ZK3201-211021610. 630. 166 80. 002 311. 404 40. 162 70. 494 10. 004 12 52624. 22 55713. 42 58917. 998
    ZK3201-221571950. 800. 169 10.002 311. 298 80. 156 40.482 40. 003 62 55022. 22 54813. 02 53815. 899
    ZK3201-2395841. 120.171 50. 002 611.898 80.192 60. 501 30.004 52 57225. 32 59615. 32 61919. 399
    ZK3201-241502090. 720. 168 50.002 711.041 20. 197 30. 473 20.004 82 54326. 12 52716. 72 49721. 098
    ZK3201-252092071. 010.168 80. 002 711. 597 40. 193 70. 496 20. 004 22 54525.82 57215. 72 59718. 199
    ZK3201-262703110. 870. 166 80. 002 410.994 00. 160 20. 476 30.003 32 52624. 72 52313. 72 51114. 699
    ZK3201-271131490. 760. 168 50.002 411.627 00. 184 30.498 40. 004 42 54325. 22 57514. 92 60719. 198
    ZK3201-281131680. 670. 167 70.002 311.134 60. 168 30. 480 40.004 52 53423. 52 53414. 22 52919.799
    ZK3201-291702130. 800. 169 70.002 311. 488 70. 176 80. 489 00. 004 42 55522. 82 56414. 52 56619. 299
    ZK3201-30851050. 810. 167 30. 002 311.155 10. 158 30. 481 90.003 32 53123. 52 53613. 32 53514. 599
    ZK3201-3151770. 670.171 50.002 711.518 90. 179 50.485 80. 003 62 57326. 22 56614. 72 55215. 899
    下载: 导出CSV

    表  2  黔西石英二长闪长岩主量元素、微量元素组成

    Table  2.   Composition of major and trace elements of quartz monzodiorite in western Guizhou

    样品号 ZK3201-h1 ZK3201-h2 ZK3201-h3 ZK3201-h4 ZK3201-h5 ZK3201-h6 ZK3201-h7 低重稀土元素型TTG岩石 高重稀土元素型TTG岩石
    岩石类型 石英二长闪长岩
    SiO2 60.5 60.6 60.0 60.2 60.1 60.1 59.2 70.8 67.3
    TiO2 0.60 0.61 0.59 0.62 0.62 0.63 0.63 0.31 0.59
    Al2O3 17.4 17.0 17.4 17.3 17.5 17.4 17.7 15.5 15.0
    TFe2O3 6.17 6.47 6.15 6.48 6.55 6.64 6.67 2.44 4.81
    MnO 0.09 0.09 0.09 0.09 0.09 0.10 0.10 0.02 0.07
    MgO wB/% 2.44 2.54 2.42 2.54 2.54 2.58 2.61 0.82 1.70
    CaO 5.39 5.37 5.27 5.36 5.35 5.43 5.47 2.88 3.76
    Na2O 4.74 4.73 4.85 4.70 4.76 4.71 4.77 4.81 4.23
    K2O 1.49 1.57 1.52 1.56 1.57 1.55 1.58 1.99 1.93
    P2O5 0.25 0.24 0.24 0.25 0.26 0.26 0.26 0.10 0.17
    烧失量 0.96 0.80 0.83 0.74 0.76 0.84 0.69
    总量 100.0 100.1 99.4 99.8 100.1 100.3 99.6
    K2O/Na2O 0.31 0.33 0.31 0.33 0.33 0.33 0.33
    An 34.2 34.0 33.2 34.1 33.8 34.4 34.2
    Ab 54.5 54.2 55.4 54.1 54.4 53.9 54.0
    Or 11.3 11.8 11.4 11.8 11.8 11.7 11.8
    A/CNK 0.91 0.88 0.91 0.90 0.91 0.90 0.91
    A/NK 1.85 1.80 1.81 1.83 1.83 1.85 1.85
    Sc 10.8 11.0 10.9 11.6 11.1 11.8 12.1 3.48 9.37
    V 87.4 92.8 88.9 92.7 96.1 95.9 96.8 26.5 56.8
    Cr 18.5 19.5 17.5 18.8 19.8 18.9 20.0 <30 43.6
    Co 16.3 16.9 16.2 16.9 17.3 17.3 17.8 4.96 10.8
    Ni 20.5 21.3 20.7 21.3 21.7 21.8 22.2 <20 26.6
    Cu 6.64 7.37 7.73 6.20 6.89 6.17 7.36 113.5 30.8
    Zn wB/10-6 75.5 79.4 78.1 81.0 81.1 82.1 84.8 49.1 78.2
    Ga 22.2 22.0 22.3 22.2 22.2 22.5 23.0
    Rb 42.8 44.3 43.3 43.4 45.1 44.5 45.8 60.3 68.4
    Sr 695 684 715 685 705 696 708 427.0 314.0
    Y 18.3 18.6 18.8 19.5 19.3 19.9 20.4 4.50 18.6
    Zr 174 169 171 175 185 168 181 120.0 171.0
    Nb 6.23 6.31 6.30 6.59 6.53 6.81 6.60 3.44 8.26
    Cs 1.07 1.14 1.07 1.09 1.12 1.11 1.09
    Ba 708 723 726 731 752 742 771 663.0 485.0
    La 23.2 27.1 24.5 20.2 24.0 34.4 45.5 25.6 26.4
    Ce 51.1 59.5 53.5 45.1 53.3 76.1 98.2 48.6 55.5
    Pr 6.64 7.53 6.92 6.06 6.79 9.26 11.3 4.90 6.3
    Nd 28.8 31.2 29.2 27.3 29.3 36.6 42.8 17.0 24.3
    Sm 5.49 6.04 5.56 5.77 5.78 6.73 7.19 2.40 4.60
    Eu 1.59 1.55 1.60 1.57 1.67 1.77 1.78 0.60 1.00
    Gd 4.51 4.79 4.62 4.64 4.79 5.02 5.10 2.00 4.70
    Tb 0.59 0.64 0.67 0.66 0.69 0.70 0.69 0.20 0.70
    Dy wB/10-6 3.30 3.41 3.47 3.60 3.53 3.63 3.86 1.00 3.70
    Ho 0.61 0.60 0.64 0.64 0.64 0.67 0.68 0.20 0.70
    Er 1.66 1.74 1.81 1.84 1.84 1.89 2.07 0.40 2.10
    Tm 0.23 0.25 0.24 0.27 0.27 0.27 0.28 < 0.1 0.30
    Yb 1.56 1.59 1.62 1.74 1.63 1.69 1.81 0.40 2.00
    Lu 0.22 0.25 0.27 0.27 0.25 0.27 0.27 < 0.1 0.30
    Hf 4.09 3.83 4.01 4.02 4.39 3.95 4.27 7.44 7.60
    Ta 0.29 0.31 0.29 0.32 0.31 0.34 0.29 0.19 0.57
    Pb 6.27 6.62 6.61 6.27 6.59 6.70 8.82 8.61 9.15
    Th 1.46 2.10 1.51 0.97 1.61 2.99 5.04 7.44 7.60
    U 0.28 0.25 0.25 0.28 0.29 0.29 0.30 0.64 1.05
    ∑REE 129 146 135 120 134 179 221
    (La/Yb)N 10.7 12.2 10.8 8.32 10.5 14.6 18.0
    Sr/Y 38.0 36.7 38.0 35.0 36.6 34.9 34.7
    Nb/Ta 21.6 20.7 21.3 20.8 21.2 20.2 22.9
    δEu 0.95 0.85 0.94 0.90 0.94 0.89 0.85
        注:低重稀土元素TTG岩石和高重稀土元素TTG岩石数据引自文献[32];An.钙长石;Ab.钠长石;Or.钾长石
    下载: 导出CSV

    表  3  黔西石英二长闪长岩Sm-Nd同位素分析结果

    Table  3.   Sm-Nd isotopic analysis of whole rock for quartz monzodiorite in western Guizhou

    样品号 t/Ma w(Sm)/10-6 w(Nd)/10-6 147Sm/144Nd 87Sr/86Sr 143Nd/144Nd εNd(t) TDM1Nd/Ma TDM2Nd/Ma
    ZK3201-h6 2 542 6.73 36.6 0.111 148 0.702 344 0.511 205 0.02 2 880 2 904
    ZK3201-h7 2 542 7.19 42.8 0.101 576 0.702 233 0.511 088 0.88 2 793 2 836
    下载: 导出CSV

    表  4  黔西石英二长闪长岩锆石Hf同位素分析结果

    Table  4.   Hf isotope analysis for zircons of quartz monzodiorite in western Guizhou

    测点号 Hf同位素比值 t/Ma εHf(t) TDM1Hf/Ma TDM2Hf/Ma fLu/Hf
    176Yb/177Hf 1σ 176Lu/177Hf 1σ 176Hf/177Hf 1σ
    ZK3201-01 0.017 223 0.000 207 0.000 589 0.000 006 0.281 196 0.000 014 2 522 -0.15 2 834 2 962 -0.98
    ZK3201-02 0.019 686 0.000 469 0.000 690 0.000 016 0.281 212 0.000 012 2 535 0.56 2 819 2 934 -0.98
    ZK3201-03 0.019 836 0.000 105 0.000 674 0.000 001 0.281 241 0.000 013 2 546 1.86 2 779 2 874 -0.98
    ZK3201-04 0.012 094 0.000 187 0.000 422 0.000 007 0.281 212 0.000 011 2 580 2.06 2 799 2 891 -0.99
    ZK3201-05 0.011 775 0.000 101 0.000 407 0.000 003 0.281 178 0.000 011 2 577 0.79 2 844 2 956 -0.99
    ZK3201-06 0.022 657 0.000 263 0.000 761 0.000 009 0.281 245 0.000 013 2 561 2.20 2 779 2 868 -0.98
    ZK3201-07 0.021 824 0.000 255 0.000 723 0.000 007 0.281 249 0.000 012 2 561 2.41 2 771 2 857 -0.98
    ZK3201-08 0.012 018 0.000 094 0.000 403 0.000 002 0.281 190 0.000 012 2 548 0.57 2 828 2 945 -0.99
    ZK3201-09 0.015 008 0.000 116 0.000 518 0.000 003 0.281 205 0.000 012 2 554 1.03 2 816 2 924 -0.98
    ZK3201-10 0.019 325 0.000 247 0.000 637 0.000 006 0.281 255 0.000 012 2 537 2.22 2 758 2 848 -0.98
    ZK3201-11 0.025 925 0.000 434 0.000 810 0.000 011 0.281 296 0.000 012 2 694 6.93 2 714 2 723 -0.98
    ZK3201-12 0.013 503 0.000 109 0.000 458 0.000 002 0.281 231 0.000 012 2 547 1.92 2 776 2 872 -0.99
    ZK3201-13 0.021 007 0.000 167 0.000 736 0.000 006 0.281 222 0.000 014 2 527 0.65 2 809 2 923 -0.98
    ZK3201-14 0.022 045 0.000 206 0.000 755 0.000 006 0.281 244 0.000 012 2 540 1.70 2 781 2 878 -0.98
    ZK3201-15 0.017 382 0.000 095 0.000 598 0.000 003 0.281 242 0.000 012 2 533 1.73 2 773 2 871 -0.98
    ZK3201-16 0.018 280 0.000 169 0.000 609 0.000 004 0.281 266 0.000 012 2 543 2.79 2 741 2 822 -0.98
    ZK3201-17 0.024 674 0.000 515 0.000 861 0.000 016 0.281 203 0.000 012 2 515 -0.51 2 844 2 975 -0.97
    ZK3201-18 0.019 084 0.000 138 0.000 642 0.000 006 0.281 239 0.000 011 2 531 1.51 2 779 2 881 -0.98
    ZK3201-19 0.014 425 0.000 064 0.000 479 0.000 002 0.281 240 0.000 013 2 513 1.42 2 766 2 871 -0.99
    ZK3201-20 0.015 889 0.000 493 0.000 551 0.000 017 0.281 243 0.000 012 2 514 1.41 2 768 2 872 -0.98
    ZK3201-21 0.037 925 0.000 804 0.001 248 0.000 029 0.281 242 0.000 014 2 526 0.48 2 819 2 932 -0.96
    ZK3201-22 0.042 585 0.000 591 0.001 367 0.000 016 0.281 240 0.000 013 2 550 0.73 2 830 2 937 -0.96
    ZK3201-23 0.051 277 0.001 382 0.001 558 0.000 044 0.281 330 0.000 019 2 572 4.08 2 721 2 776 -0.95
    ZK3201-24 0.018 451 0.000 158 0.000 637 0.000 005 0.281 204 0.000 011 2 543 0.56 2 826 2 941 -0.98
    ZK3201-25 0.033 207 0.000 481 0.001 029 0.000 014 0.281 235 0.000 012 2 545 1.01 2 813 2 918 -0.97
    ZK3201-26 0.042 337 0.001 472 0.001 296 0.000 036 0.281 324 0.000 014 2 526 3.31 2 710 2 781 -0.96
    ZK3201-27 0.017 273 0.000 254 0.000 543 0.000 008 0.281 206 0.000 013 2 543 0.76 2 817 2 930 -0.98
    ZK3201-28 0.014 926 0.000 125 0.000 505 0.000 003 0.281 240 0.000 012 2 534 1.84 2 768 2 865 -0.98
    ZK3201-29 0.045 587 0.000 972 0.001 542 0.000 035 0.281 272 0.000 014 2 555 1.66 2 800 2 892 -0.95
    ZK3201-30 0.018 945 0.000 145 0.000 593 0.000 003 0.281 182 0.000 013 2 531 -0.44 2 853 2 985 -0.98
    ZK3201-31 0.029 523 0.000 517 0.000 922 0.000 014 0.281 239 0.000 012 2 573 1.96 2 800 2 890 -0.97
    下载: 导出CSV
  • [1] Moyen J F, Martin H.Forty years of TTG research[J].Lithos, 2012, 148(Cmomplete):312-336. http://www.sciencedirect.com/science/article/pii/S0024493712002332
    [2] 张旗, 翟明国.太古宙TTG岩石是什么含义?[J].岩石学报, 2012, 28(11):3446-3456. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201211004.htm
    [3] Gao S, Ling W L, Qiu Y M, et al.Contrasting geochemical and Sm-Nd isotopic compositions of archean metasediments from the Kongling High-Grade Terrain of the Yangtze Craton:Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J].Geochimica et Cosmochimica Acta, 1999, 63(13/14):2071-2088. http://www.sciencedirect.com/science/article/pii/S0016703799001532
    [4] Guo J L, Gao S, Wu Y B, et al.3.45 Ga Granitic gneisses from the Yangtze craton, south China:Implications for early archean crustal growth[J].Precambrian Research, 2014, 242:82-95. doi: 10.1016/j.precamres.2013.12.018
    [5] Han P Y, Guo J L, Chen K, et al.Widespread neoarchean (2.7-2.6 Ga) magmatism of the Yangtze craton, south China, as revealed by modern river detrital zircons[J].Gondwana Research, 2017, 42:1-12. doi: 10.1016/j.gr.2016.09.006
    [6] Liu X M, Gao S, Diwu CR, et al.Precambrian crustal growth of Yangtze craton as revealed revealed by detrital zircon studies[J].American Journal of Science, 2008, 208(4):421-468. http://www.researchgate.net/publication/240797310_Precambrian_crustal_growth_of_Yangtze_Craton_as_revealed_by_detrital_zircon_studies
    [7] Qiu Y M, Gao S, McNaughton N J, et al.Frist evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics[J].Geology, 2000, 28(1):11-14. doi: 10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2
    [8] Wang Z J, Wang J, Du Q D, et al.The evolution of the central Yangtze block during early neoarchean time:Evidence from geochronology and geochemistry[J].Joural of Asian Earth Science, 2013, 77(15):31-44.
    [9] Wang Z J, Wang J, Du Q D, et al.Mature archean continental, geochronology and geochemistry[J].Chinese Science Bulletin, 2013, 58(19):2360-2369. doi: 10.1007/s11434-013-5668-7
    [10] Wu Y B, Zheng Y F, Gao S, et al.Zircon U-Pb age and trace evidence for paleoproterozoic granulite-facies metamorphism and archean crustal rocks in the Dabie orogen[J].Lithos, 2008, 101(3/4):308-322.
    [11] Wu Y B, Gao S, Zhang H F, et al.Geochemistry and zircon U-Pb geochronology of paleoproterozoic arc related granitoid in the northwestern Yangtze block and its geological implications[J].Precambrian Research, 2012, 200/203:26-37. doi: 10.1016/j.precamres.2011.12.015
    [12] Chen K, Gao S, Wu Y B, et al.2.6-2.7 Ga crustal growth in Yangtze craton, south China[J].Precambrian Research, 2013, 224:472-490. doi: 10.1016/j.precamres.2012.10.017
    [13] Gao S, Yang J, Zhou L, et al.Age and growth of the archean kongling terrain, south China, with Emphasis on 3.3 Ga granitoid gneisses[J].American Journal of Science, 2011, 311(2):153-182. doi: 10.2475/02.2011.03
    [14] Guo J L, Wu Y B, Gao S, et al.Episodic paleoarchean-paleoproterozoic (3.3-2.0 Ga) granitoid magmatism in Yangtze craton, south China:Implications for Late Archean tectonics[J].Precambrian Research, 2015, 270:246-266. doi: 10.1016/j.precamres.2015.09.007
    [15] Zhang S B, Zheng Y F, Wu Y B, et al.Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of archean crust in south China[J].Earth and Planetary Science Letters, 2006, 252(1/2):56-71.
    [16] Jiao W F, Wu Y B, Yang S H, et al.The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition[J].Science in China Series D:Earth Sciences, 2009, 59(2):1393-1399.
    [17] Zhou G Y, Wu Y B, Gao S, et al.The 2.65 Ga a-type granite in the northeastern Yangtze craton:Petrogenesis and geological implications[J].Prcambrian Research, 2015, 258:247-259. doi: 10.1016/j.precamres.2015.01.003
    [18] 韩润生, 王峰, 胡煜昭, 等.会泽型(HZT)富锗银铅锌矿床成矿构造动力学研究及年代学约束[J].大地构造与成矿学, 2014, 38(4):758-771. http://www.cnki.com.cn/Article/CJFDTotal-DGYK201404003.htm
    [19] Hu Z C, Zhang W, Liu Y S, et al."Wave" signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis:Application to lead isotope analysis[J].Analytical Chemistry, 2015, 87(2):1152-1157. doi: 10.1021/ac503749k
    [20] Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J].Chemical Geology, 2008, 257(1/2):34-43.
    [21] Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J].Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082
    [22] Ludwig K R.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel[M].California, Berkeley:Berkeley Geochronology Center, 2003:39.
    [23] Russell W A, Papanastassiou D A, Tombrello T A.Ca isotope fractionation on the earth and other solar system materials[J].Geochimica et Cosmochimica Acta, 1978, 42(8):1075-1090. doi: 10.1016/0016-7037(78)90105-9
    [24] Thirlwall M F.Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis[J].Chemical Geology, 1991, 94(2):85-104. doi: 10.1016/S0009-2541(10)80021-X
    [25] Li C F, Li X H, Li Q L, et al.Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme[J].Analytica Chimica Acta, 2012, 727(10):54-60.
    [26] Tanaka T, Togashi S, Kamioka H, et al.Jndi-1:A neodymium isotopic reference in consistency with lajolla neodymium[J].Chemical Geology, 2000, 168(3/4):279-281.
    [27] Weis D, Kieffer B, Maerschalk C, et al.High-precision isotopic characterization of USGS reference materials by TIMs and MC-ICP-MS[J].Geochemistry Geophysics Geosystems, 2006, 7(8):139-149. doi: 10.1029/2006GC001283/full
    [28] Hu Z C, Liu Y S, Gao S, et al.A "wire" signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2012, 78:50-57. doi: 10.1016/j.sab.2012.09.007
    [29] Hu Z C, Liu Y S, Gao S, et al.Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2012, 27(9):1391-1399. doi: 10.1039/c2ja30078h
    [30] Fisher C M, Vervoort J D, Hanchar J M.Guidelines for reporting zircon Hf isotopic data by LA-MC-ICP MS and potential pitfalls in the interpretation of thesedata[J].Chemical Geology, 2014, 363:125-133. doi: 10.1016/j.chemgeo.2013.10.019
    [31] Blichert-Toft J, Chauvel C, Albarède F.Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS[J].Contributions to Mineralogy and Petrology, 1997, 127:248-260. doi: 10.1007/s004100050278
    [32] Halla J, Hunen J V, Heilimo E, et al.Geochemical and numerical constraints on Neoarchean plate tectonics[J].Precambrian Research, 2009, 174:155-162. doi: 10.1016/j.precamres.2009.07.008
    [33] Haskin L A, Haskin M A, Frey F A, et al.Relative and absolute terrestrial abundances of the rare earths[C]//Ahrens L H.Origin and distribution of the elements: A volume in international series of monographs in earth sciences.Oxford: Pergamon Press, 1968: 889-911.
    [34] Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society, London, Special Publication, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    [35] Liu Y, Yang K G, Polat A, et al.Reconstruction of the cryogenian palaeogeography in the Yangtze domain:Constraints from detrital age patterns[J].Geological Magzine, 2019, 156(7):1247-1264. doi: 10.1017/S0016756818000535
    [36] Condie K C.TTGs and adakites:Are they both slab melts?[J].Lithos, 2005, 80:33-44. doi: 10.1016/j.lithos.2003.11.001
    [37] Foley S, Tiepolo M, Vannucci R.Growth of early continental crust controlled by melting of amphibolites in subduction zones[J].Nature, 2002, 417(6891):837-840. doi: 10.1038/nature00799
    [38] Moyen J F.The composite Archaean grey gneisses:Petrological significance and evidence for a non-uniqu tectonic setting for Archaean crustal growth[J].Lithos, 2011, 123(1/4):21-36. http://www.sciencedirect.com/science/article/pii/S0024493710002665
    [39] Hoffmann J E, Munker C, Naeraa T, et al.Mechanisms of Archean crust formation inferred from high- precision HFSE systematics in TTGs[J].Geochimica et Cosmochimica Acta, 2011, 75(15):4157-4178. doi: 10.1016/j.gca.2011.04.027
    [40] 洪涛, 游军, 吴楚, 等.滇西桃花花岗斑岩中新太古代古元古代锆石年龄信息:对扬子板块西缘基底时代的约束[J].岩石学报, 2015, 31(9):2583-2596. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201509009.htm
    [41] Martin H.Petrogenesis of archaean trondhjemites, tonalites and granodiorites from eastern finland:major and trace elements geochemistry[J].Journal of Petrology, 1987, 28(5):921-953. doi: 10.1093/petrology/28.5.921
    [42] Moyen J F, Stevens G.Experimental constraints on TTG petrogenesis: Implications for Archean Geodynamics[C]//Benn K, Mareschal J C, Condie K C.Archean geodynamics and environments.Geophysical monograph 164.Washington, DC: American Geophysical Union, 2006.
    [43] Arth J G, Barker F.Rare-earth partitioning between hornblende and dacitic liquid and implications for the genesis of trondhjemitic-tonaliticmagmas[J].Geology, 1976, 4(9):534-536. doi: 10.1130/0091-7613(1976)4<534:RPBHAD>2.0.CO;2
    [44] Barker F, Arth J G.Generation of trondhjemitic-tonalitic liquids and Archaean bimodal trondhjemite-basaltsuites[J].Geology, 1976, 4(10):596-600. doi: 10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2
    [45] White R V, Tarney J, Kerr A C, et al.Modification of an oceanic plateau, Aruba, Dutch Caribbean:Implications for the generation of continental crust[J].Lithos, 1999, 46:43-68. doi: 10.1016/S0024-4937(98)00061-9
    [46] Weiberg R F, Hasalová P.Water-fluxed melting of the continental curst:A Review[J].Lithos, 2015, 212/215:158-188. doi: 10.1016/j.lithos.2014.08.021
    [47] 吴鸣谦, 左梦璐, 张德会, 等.TTG岩套的成因及其形成环境[J].地质论评, 2014, 60(3):503-514.
    [48] 谢燮, 李文明, 孙吉明, 等.新疆北山地区白山镁铁岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其找矿意义[J].地质科技情报, 2018, 37(6):11-12.
    [49] 孟德磊, 贾小辉, 谢国刚, 等.粤南长蛇山分异Ⅰ型花岗岩的年代学、地球化学特征及其构造意义[J].地质科技情报, 2019, 38(4):193-204.
    [50] Arth J G, Barker F, Peterman Z E, et al.Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of Southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas[J].Journal of Petrology, 1978, 19(2):289-316. doi: 10.1093/petrology/19.2.289
    [51] Drummond M S, Defant M J.A model for trondhjemite-tonalitedacite genesis and crustal growth via slab melting:Archean to modern comparisons[J].Journal of Geophysical Research, 1990, 95(B13):21503-21521. doi: 10.1029/JB095iB13p21503
    [52] Drummond M S, Defant M J, Kepezhinskas P K.Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas[J].Transactions of the Royal Society of Edinburgh:Earth Sciences, 1996, 87(1/2):205-215. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8345451&fulltextType=RA&fileId=S0263593300006611
    [53] 张华锋, 王浩铮, 豆敬兆, 等.华北克拉通怀安陆块新太古代低铝和高铝TTG片麻岩的地球化学特征与成因[J].岩石学报, 2015, 31(6):1518-1534. http://d.wanfangdata.com.cn/Periodical/ysxb98201506003
    [54] 杨坤光, 何良伦, 刘雨, 等.黔西逆冲滑脱构造及其对铅锌矿床的控制[J].地质科技通报, 2020, 39(1):149-156. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9935.shtml
    [55] Zong K Q, Klemd R, Yuan Y, et al.The assembly of Rodinia:The correlation of early Neoproterozoic (ca.900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J].Precambrian Research, 2017, 290:32-48. doi: 10.1016/j.precamres.2016.12.010
    [56] Barker F, Arth J G, Peterman Z E, et al.The 1.7- to 1.8-b.y.-old trondhjemites of southwestern Colorado and northern New Mexico:Geochemistry and depths of genesis[J].Geological Society of America Bulletin, 1976, 87(2):189-198 doi: 10.1130/0016-7606(1976)87<189:TTBTOS>2.0.CO;2
    [57] Barker F.Trondhjemites: Definition, environment and hypotheses oforigin[C]//Barker F.Trondhjemites dacites and related rocks.Amsterdam: Elsevier, 1979: 1-12.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  588
  • PDF下载量:  4239
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-05

目录

    /

    返回文章
    返回