Discovery of 2.5 Ga quartz monzodiorite and its geological significance in Hezhang, western Guizhou
-
摘要: 黔西位于扬子板块西南缘,有关扬子板块内约2.5 Ga的岩浆事件记录极少。最近,对黔西赫章发现的石英二长闪长岩的研究表明,其成岩年龄为(2 542±9)Ma,为该区首次发现的新太古代晚期岩石。该岩石主要由斜长石、碱性长石、石英、角闪石、黑云母等矿物组成,具有较高的SiO2(59.2%~60.6%)、Na2O(4.70%~4.85%)质量分数和Na2O/K2O(3.02%~3.19%)比值,以及较低的Al2O3(17.0%~17.7%)、MgO(2.42%~2.61%)质量分数。样品稀土元素总质量分数为120×10-6~221×10-6,(La/Yb)N=8.32~17.98,轻、重稀土元素分异不明显,表现为弱的右倾稀土元素配分模式,并具有弱的Eu负异常。在微量元素蛛网图上,样品富集大离子亲石元素(Ba、Sr)、亏损高场强元素(Nb、Ta、Ti),具有弱负到正的εHf(t)值(-0.51~+6.93)和正的εNd(t)值(+0.22~+0.88),与太古宙低铝型高重稀土元素TTG的地球化学性质基本一致。综合研究显示,该岩石可能是在角闪岩相下,下地壳基性岩部分熔融形成的,源区残留相主要为金红石以及斜长石。黔西约2.5 Ga岩石的发现证实了扬子板块西南缘具有新太古代基底的存在,这为扬子周缘新太古代岩浆成因的碎屑锆石研究提供了依据,为扬子板块新太古代地壳演化提供了新的信息。Abstract: The western Guizhou is located at the southwest margin of the Yangtze Block.The record of 2.5 Ga magmatic events in the Yangtze Block is very little.The Hezhang quartz monzodiorite recently discovered in western Guizhou shows that the LA-ICP-MS U-Pb age of the rock is (2 542±9)Ma, which is the first late Neoarchean rock found in this area.The rock is mainly composed of plagioclase, alkaline feldspar, quartz, amphibole, biotite, etc.It has medium high content of SiO2 (59.2%-60.6%), Na2O (4.70%-4.85%), and Na2O/K2O (3.02%-3.19%)ratios, and low content of Al2O3 (17%-17.7%) and MgO(2.42%-2.61%).The total number of rare earth elements (REE) was 120×10-6-221×10-6, (La/Yb)N=(8.32-17.98), and the differentiation of light- and heavy-REEs was not obvious, which showed a right-leaning type.The rocks have negative anomaly of Eu, enrichment in large ion lithophile elements (LILEs)(Ba, Sr) and deficency in high field strong elements (HSFEs) (Nb, Ta, Ti).The samples have weak negative to positive εHf(t) value (-0.51-+6.93) and positive εNd(t) value (+0.22-+0.88).The rock has the characteristics of low-Al type and high HREE TTG series.The comprehensive study shows that this rock may be formed by partial melting of metasomatism between the oceanic subducted plate and the water-bearing mantle wedge in the low-pressure shallow environment under eclogite facies.The residual phases in the source area are mainly rutile and a small amount of amphibole.This first report of 2.5 Ga rocks confirms the existence of the Neoarchean basement in the southwest margin of Yangtze Block, which provides a basis for the study of detrital zircons of Neoarchean magmatic origin around the Yangtze Block and provides new information for the evolution of the Neoarchean crust of the Yangtze Block.
-
Key words:
- quartz monzodiorite /
- Neoarchean /
- zircon U-Pb dating /
- western Guizhou /
- Yangtze Block
-
图 1 研究区区域地质简图(据文献[18]修改)
①怒江断裂;②金沙江-红河断裂;③鲜水河断裂;④龙门山断裂;⑤小金河-中甸断裂;⑥箐河-程海断裂;⑦安宁河-绿汁江断裂;⑧小江断裂;⑨康定-奕良-水城断裂(紫云-垭都断裂);⑩弥勒-师宗-水城断裂
Figure 1. Regional geological map in the study area
图 8 前寒武纪时期扬子西缘-北缘碎屑锆石年龄谱(据文献[35]修改)
Figure 8. Age spectrum of Precambrian detrital zircons from the western and northern margin of the Yangtze
表 1 黔西石英二长闪长岩u-Pb锆石年龄分析结果
Table 1. U-Pb data for zircons of quartz monzodiorite in western Guizhou
测点号 Th U Th/U 同位素比值 同位素年龄/Ma 谐和度/% wB/10-6 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206pb/238U ±1σ 207Pb/206Pb 1σ 207Pb/235Pb 1σ 206pb/238U ±1σ ZK3201-01 197 227 0. 87 0. 165 4 0.002 6 10.750 0 0. 203 6 0. 469 2 0. 006 3 2 522 25. 9 2 502 17. 7 2 480 27. 5 99 ZK3201-02 196 234 0. 84 0. 167 8 0.002 4 11.377 1 0. 172 8 0. 489 6 0.004 3 2 535 18. 4 2 555 14. 3 2 569 18. 8 99 ZK3201-03 98 169 0. 58 0.168 8 0. 002 2 12. 084 5 0. 176 8 0. 517 1 0. 005 3 2 546 21. 9 2 611 13. 8 2 687 22. 6 97 ZK3201-04 104 152 0. 68 0. 172 3 0. 002 5 11.127 3 0. 154 7 0. 466 4 0.003 6 2 580 19. 4 2 534 13. 1 2 468 15. 7 97 ZK3201-05 86 122 0. 71 0.172 0 0. 003 3 11.882 4 0.222 8 0. 498 9 0. 004 4 2 577 31. 5 2 595 17. 6 2 609 19. 0 99 ZK3201-06 164 188 0. 87 0. 170 3 0.002 5 11.327 4 0. 182 2 0. 479 6 0.004 6 2 561 25.8 2 550 15. 1 2 526 20. 0 99 ZK3201-07 146 173 0. 84 0. 170 2 0.002 3 11. 143 8 0.152 7 0.472 6 0. 003 8 2 561 23. 6 2 535 12. 9 2 495 16. 7 98 ZK3201-08 86 126 0. 68 0. 169 0 0. 002 3 11.235 9 0. 162 4 0.478 9 0.003 5 2 548 23. 9 2 543 13. 6 2 522 15. 3 99 ZK3201-09 79 119 0. 67 0. 169 6 0.002 4 11.601 0 0. 164 7 0.492 7 0. 003 6 2 554 22. 7 2 573 13. 4 2 583 15. 8 99 ZK3201-10 115 161 0. 72 0.167 9 0. 002 2 11. 145 0 0. 151 0 0. 478 1 0. 003 6 2 537 22. 5 2 535 12. 7 2 519 15. 9 99 ZK3201-11 79 183 0. 43 0. 184 5 0.002 7 12. 686 7 0.208 5 0. 494 7 0. 005 0 2 694 24. 1 2 657 15. 6 2 591 21. 7 97 ZK3201-12 92 144 0. 64 0. 169 0 0. 002 8 11.199 3 0.181 9 0. 477 2 0.004 1 2 547 28. 2 2 540 15. 2 2 515 18. 1 99 ZK3201-13 107 155 0. 69 0. 166 9 0.002 7 11.441 3 0. 179 1 0. 493 5 0.004 1 2 527 26. 8 2 560 14. 7 2 586 17. 7 98 ZK3201-14 109 152 0. 72 0.168 2 0. 002 5 11. 032 5 0. 163 7 0. 472 3 0. 003 6 2 540 25. 3 2 526 13. 9 2 493 15. 9 98 ZK3201-15 140 192 0. 73 0. 167 5 0. 002 4 10.986 0 0. 151 9 0.472 5 0.003 5 2 533 23. 5 2 522 13. 0 2 494 15. 4 98 ZK3201-16 117 159 0. 74 0. 168 5 0. 003 2 11.718 2 0. 266 5 0. 500 2 0. 006 2 2 543 32. 6 2 582 21. 4 2 615 26. 8 98 ZK3201-17 163 202 0. 81 0. 165 7 0.002 3 11.060 5 0. 155 7 0. 481 6 0.003 9 2 515 24. 2 2 528 13. 2 2 534 17. 0 99 ZK3201-18 135 179 0. 76 0. 167 3 0.002 6 10. 925 5 0.172 5 0.471 2 0. 004 1 2 531 25. 5 2 517 14. 8 2 489 18. 0 98 ZK3201-19 118 174 0. 68 0. 165 5 0. 002 6 11.122 9 0. 182 6 0. 485 0 0.004 2 2 513 26. 1 2 533 15. 4 2 549 18. 4 99 ZK3201-20 66 179 0. 37 0. 165 6 0.002 4 11.022 8 0. 155 7 0.480 3 0. 003 3 2 514 19. 4 2 525 13. 3 2 529 14. 4 99 ZK3201-21 102 161 0. 63 0. 166 8 0. 002 3 11. 404 4 0. 162 7 0. 494 1 0. 004 1 2 526 24. 2 2 557 13. 4 2 589 17. 9 98 ZK3201-22 157 195 0. 80 0. 169 1 0.002 3 11. 298 8 0. 156 4 0.482 4 0. 003 6 2 550 22. 2 2 548 13. 0 2 538 15. 8 99 ZK3201-23 95 84 1. 12 0.171 5 0. 002 6 11.898 8 0.192 6 0. 501 3 0.004 5 2 572 25. 3 2 596 15. 3 2 619 19. 3 99 ZK3201-24 150 209 0. 72 0. 168 5 0.002 7 11.041 2 0. 197 3 0. 473 2 0.004 8 2 543 26. 1 2 527 16. 7 2 497 21. 0 98 ZK3201-25 209 207 1. 01 0.168 8 0. 002 7 11. 597 4 0. 193 7 0. 496 2 0. 004 2 2 545 25.8 2 572 15. 7 2 597 18. 1 99 ZK3201-26 270 311 0. 87 0. 166 8 0. 002 4 10.994 0 0. 160 2 0. 476 3 0.003 3 2 526 24. 7 2 523 13. 7 2 511 14. 6 99 ZK3201-27 113 149 0. 76 0. 168 5 0.002 4 11.627 0 0. 184 3 0.498 4 0. 004 4 2 543 25. 2 2 575 14. 9 2 607 19. 1 98 ZK3201-28 113 168 0. 67 0. 167 7 0.002 3 11.134 6 0. 168 3 0. 480 4 0.004 5 2 534 23. 5 2 534 14. 2 2 529 19.7 99 ZK3201-29 170 213 0. 80 0. 169 7 0.002 3 11. 488 7 0. 176 8 0. 489 0 0. 004 4 2 555 22. 8 2 564 14. 5 2 566 19. 2 99 ZK3201-30 85 105 0. 81 0. 167 3 0. 002 3 11.155 1 0. 158 3 0. 481 9 0.003 3 2 531 23. 5 2 536 13. 3 2 535 14. 5 99 ZK3201-31 51 77 0. 67 0.171 5 0.002 7 11.518 9 0. 179 5 0.485 8 0. 003 6 2 573 26. 2 2 566 14. 7 2 552 15. 8 99 表 2 黔西石英二长闪长岩主量元素、微量元素组成
Table 2. Composition of major and trace elements of quartz monzodiorite in western Guizhou
样品号 ZK3201-h1 ZK3201-h2 ZK3201-h3 ZK3201-h4 ZK3201-h5 ZK3201-h6 ZK3201-h7 低重稀土元素型TTG岩石 高重稀土元素型TTG岩石 岩石类型 石英二长闪长岩 SiO2 60.5 60.6 60.0 60.2 60.1 60.1 59.2 70.8 67.3 TiO2 0.60 0.61 0.59 0.62 0.62 0.63 0.63 0.31 0.59 Al2O3 17.4 17.0 17.4 17.3 17.5 17.4 17.7 15.5 15.0 TFe2O3 6.17 6.47 6.15 6.48 6.55 6.64 6.67 2.44 4.81 MnO 0.09 0.09 0.09 0.09 0.09 0.10 0.10 0.02 0.07 MgO wB/% 2.44 2.54 2.42 2.54 2.54 2.58 2.61 0.82 1.70 CaO 5.39 5.37 5.27 5.36 5.35 5.43 5.47 2.88 3.76 Na2O 4.74 4.73 4.85 4.70 4.76 4.71 4.77 4.81 4.23 K2O 1.49 1.57 1.52 1.56 1.57 1.55 1.58 1.99 1.93 P2O5 0.25 0.24 0.24 0.25 0.26 0.26 0.26 0.10 0.17 烧失量 0.96 0.80 0.83 0.74 0.76 0.84 0.69 总量 100.0 100.1 99.4 99.8 100.1 100.3 99.6 K2O/Na2O 0.31 0.33 0.31 0.33 0.33 0.33 0.33 An 34.2 34.0 33.2 34.1 33.8 34.4 34.2 Ab 54.5 54.2 55.4 54.1 54.4 53.9 54.0 Or 11.3 11.8 11.4 11.8 11.8 11.7 11.8 A/CNK 0.91 0.88 0.91 0.90 0.91 0.90 0.91 A/NK 1.85 1.80 1.81 1.83 1.83 1.85 1.85 Sc 10.8 11.0 10.9 11.6 11.1 11.8 12.1 3.48 9.37 V 87.4 92.8 88.9 92.7 96.1 95.9 96.8 26.5 56.8 Cr 18.5 19.5 17.5 18.8 19.8 18.9 20.0 <30 43.6 Co 16.3 16.9 16.2 16.9 17.3 17.3 17.8 4.96 10.8 Ni 20.5 21.3 20.7 21.3 21.7 21.8 22.2 <20 26.6 Cu 6.64 7.37 7.73 6.20 6.89 6.17 7.36 113.5 30.8 Zn wB/10-6 75.5 79.4 78.1 81.0 81.1 82.1 84.8 49.1 78.2 Ga 22.2 22.0 22.3 22.2 22.2 22.5 23.0 Rb 42.8 44.3 43.3 43.4 45.1 44.5 45.8 60.3 68.4 Sr 695 684 715 685 705 696 708 427.0 314.0 Y 18.3 18.6 18.8 19.5 19.3 19.9 20.4 4.50 18.6 Zr 174 169 171 175 185 168 181 120.0 171.0 Nb 6.23 6.31 6.30 6.59 6.53 6.81 6.60 3.44 8.26 Cs 1.07 1.14 1.07 1.09 1.12 1.11 1.09 Ba 708 723 726 731 752 742 771 663.0 485.0 La 23.2 27.1 24.5 20.2 24.0 34.4 45.5 25.6 26.4 Ce 51.1 59.5 53.5 45.1 53.3 76.1 98.2 48.6 55.5 Pr 6.64 7.53 6.92 6.06 6.79 9.26 11.3 4.90 6.3 Nd 28.8 31.2 29.2 27.3 29.3 36.6 42.8 17.0 24.3 Sm 5.49 6.04 5.56 5.77 5.78 6.73 7.19 2.40 4.60 Eu 1.59 1.55 1.60 1.57 1.67 1.77 1.78 0.60 1.00 Gd 4.51 4.79 4.62 4.64 4.79 5.02 5.10 2.00 4.70 Tb 0.59 0.64 0.67 0.66 0.69 0.70 0.69 0.20 0.70 Dy wB/10-6 3.30 3.41 3.47 3.60 3.53 3.63 3.86 1.00 3.70 Ho 0.61 0.60 0.64 0.64 0.64 0.67 0.68 0.20 0.70 Er 1.66 1.74 1.81 1.84 1.84 1.89 2.07 0.40 2.10 Tm 0.23 0.25 0.24 0.27 0.27 0.27 0.28 < 0.1 0.30 Yb 1.56 1.59 1.62 1.74 1.63 1.69 1.81 0.40 2.00 Lu 0.22 0.25 0.27 0.27 0.25 0.27 0.27 < 0.1 0.30 Hf 4.09 3.83 4.01 4.02 4.39 3.95 4.27 7.44 7.60 Ta 0.29 0.31 0.29 0.32 0.31 0.34 0.29 0.19 0.57 Pb 6.27 6.62 6.61 6.27 6.59 6.70 8.82 8.61 9.15 Th 1.46 2.10 1.51 0.97 1.61 2.99 5.04 7.44 7.60 U 0.28 0.25 0.25 0.28 0.29 0.29 0.30 0.64 1.05 ∑REE 129 146 135 120 134 179 221 (La/Yb)N 10.7 12.2 10.8 8.32 10.5 14.6 18.0 Sr/Y 38.0 36.7 38.0 35.0 36.6 34.9 34.7 Nb/Ta 21.6 20.7 21.3 20.8 21.2 20.2 22.9 δEu 0.95 0.85 0.94 0.90 0.94 0.89 0.85 注:低重稀土元素TTG岩石和高重稀土元素TTG岩石数据引自文献[32];An.钙长石;Ab.钠长石;Or.钾长石 表 3 黔西石英二长闪长岩Sm-Nd同位素分析结果
Table 3. Sm-Nd isotopic analysis of whole rock for quartz monzodiorite in western Guizhou
样品号 t/Ma w(Sm)/10-6 w(Nd)/10-6 147Sm/144Nd 87Sr/86Sr 143Nd/144Nd εNd(t) TDM1Nd/Ma TDM2Nd/Ma ZK3201-h6 2 542 6.73 36.6 0.111 148 0.702 344 0.511 205 0.02 2 880 2 904 ZK3201-h7 2 542 7.19 42.8 0.101 576 0.702 233 0.511 088 0.88 2 793 2 836 表 4 黔西石英二长闪长岩锆石Hf同位素分析结果
Table 4. Hf isotope analysis for zircons of quartz monzodiorite in western Guizhou
测点号 Hf同位素比值 t/Ma εHf(t) TDM1Hf/Ma TDM2Hf/Ma fLu/Hf 176Yb/177Hf 1σ 176Lu/177Hf 1σ 176Hf/177Hf 1σ ZK3201-01 0.017 223 0.000 207 0.000 589 0.000 006 0.281 196 0.000 014 2 522 -0.15 2 834 2 962 -0.98 ZK3201-02 0.019 686 0.000 469 0.000 690 0.000 016 0.281 212 0.000 012 2 535 0.56 2 819 2 934 -0.98 ZK3201-03 0.019 836 0.000 105 0.000 674 0.000 001 0.281 241 0.000 013 2 546 1.86 2 779 2 874 -0.98 ZK3201-04 0.012 094 0.000 187 0.000 422 0.000 007 0.281 212 0.000 011 2 580 2.06 2 799 2 891 -0.99 ZK3201-05 0.011 775 0.000 101 0.000 407 0.000 003 0.281 178 0.000 011 2 577 0.79 2 844 2 956 -0.99 ZK3201-06 0.022 657 0.000 263 0.000 761 0.000 009 0.281 245 0.000 013 2 561 2.20 2 779 2 868 -0.98 ZK3201-07 0.021 824 0.000 255 0.000 723 0.000 007 0.281 249 0.000 012 2 561 2.41 2 771 2 857 -0.98 ZK3201-08 0.012 018 0.000 094 0.000 403 0.000 002 0.281 190 0.000 012 2 548 0.57 2 828 2 945 -0.99 ZK3201-09 0.015 008 0.000 116 0.000 518 0.000 003 0.281 205 0.000 012 2 554 1.03 2 816 2 924 -0.98 ZK3201-10 0.019 325 0.000 247 0.000 637 0.000 006 0.281 255 0.000 012 2 537 2.22 2 758 2 848 -0.98 ZK3201-11 0.025 925 0.000 434 0.000 810 0.000 011 0.281 296 0.000 012 2 694 6.93 2 714 2 723 -0.98 ZK3201-12 0.013 503 0.000 109 0.000 458 0.000 002 0.281 231 0.000 012 2 547 1.92 2 776 2 872 -0.99 ZK3201-13 0.021 007 0.000 167 0.000 736 0.000 006 0.281 222 0.000 014 2 527 0.65 2 809 2 923 -0.98 ZK3201-14 0.022 045 0.000 206 0.000 755 0.000 006 0.281 244 0.000 012 2 540 1.70 2 781 2 878 -0.98 ZK3201-15 0.017 382 0.000 095 0.000 598 0.000 003 0.281 242 0.000 012 2 533 1.73 2 773 2 871 -0.98 ZK3201-16 0.018 280 0.000 169 0.000 609 0.000 004 0.281 266 0.000 012 2 543 2.79 2 741 2 822 -0.98 ZK3201-17 0.024 674 0.000 515 0.000 861 0.000 016 0.281 203 0.000 012 2 515 -0.51 2 844 2 975 -0.97 ZK3201-18 0.019 084 0.000 138 0.000 642 0.000 006 0.281 239 0.000 011 2 531 1.51 2 779 2 881 -0.98 ZK3201-19 0.014 425 0.000 064 0.000 479 0.000 002 0.281 240 0.000 013 2 513 1.42 2 766 2 871 -0.99 ZK3201-20 0.015 889 0.000 493 0.000 551 0.000 017 0.281 243 0.000 012 2 514 1.41 2 768 2 872 -0.98 ZK3201-21 0.037 925 0.000 804 0.001 248 0.000 029 0.281 242 0.000 014 2 526 0.48 2 819 2 932 -0.96 ZK3201-22 0.042 585 0.000 591 0.001 367 0.000 016 0.281 240 0.000 013 2 550 0.73 2 830 2 937 -0.96 ZK3201-23 0.051 277 0.001 382 0.001 558 0.000 044 0.281 330 0.000 019 2 572 4.08 2 721 2 776 -0.95 ZK3201-24 0.018 451 0.000 158 0.000 637 0.000 005 0.281 204 0.000 011 2 543 0.56 2 826 2 941 -0.98 ZK3201-25 0.033 207 0.000 481 0.001 029 0.000 014 0.281 235 0.000 012 2 545 1.01 2 813 2 918 -0.97 ZK3201-26 0.042 337 0.001 472 0.001 296 0.000 036 0.281 324 0.000 014 2 526 3.31 2 710 2 781 -0.96 ZK3201-27 0.017 273 0.000 254 0.000 543 0.000 008 0.281 206 0.000 013 2 543 0.76 2 817 2 930 -0.98 ZK3201-28 0.014 926 0.000 125 0.000 505 0.000 003 0.281 240 0.000 012 2 534 1.84 2 768 2 865 -0.98 ZK3201-29 0.045 587 0.000 972 0.001 542 0.000 035 0.281 272 0.000 014 2 555 1.66 2 800 2 892 -0.95 ZK3201-30 0.018 945 0.000 145 0.000 593 0.000 003 0.281 182 0.000 013 2 531 -0.44 2 853 2 985 -0.98 ZK3201-31 0.029 523 0.000 517 0.000 922 0.000 014 0.281 239 0.000 012 2 573 1.96 2 800 2 890 -0.97 -
[1] Moyen J F, Martin H.Forty years of TTG research[J].Lithos, 2012, 148(Cmomplete):312-336. http://www.sciencedirect.com/science/article/pii/S0024493712002332 [2] 张旗, 翟明国.太古宙TTG岩石是什么含义?[J].岩石学报, 2012, 28(11):3446-3456. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201211004.htm [3] Gao S, Ling W L, Qiu Y M, et al.Contrasting geochemical and Sm-Nd isotopic compositions of archean metasediments from the Kongling High-Grade Terrain of the Yangtze Craton:Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J].Geochimica et Cosmochimica Acta, 1999, 63(13/14):2071-2088. http://www.sciencedirect.com/science/article/pii/S0016703799001532 [4] Guo J L, Gao S, Wu Y B, et al.3.45 Ga Granitic gneisses from the Yangtze craton, south China:Implications for early archean crustal growth[J].Precambrian Research, 2014, 242:82-95. doi: 10.1016/j.precamres.2013.12.018 [5] Han P Y, Guo J L, Chen K, et al.Widespread neoarchean (2.7-2.6 Ga) magmatism of the Yangtze craton, south China, as revealed by modern river detrital zircons[J].Gondwana Research, 2017, 42:1-12. doi: 10.1016/j.gr.2016.09.006 [6] Liu X M, Gao S, Diwu CR, et al.Precambrian crustal growth of Yangtze craton as revealed revealed by detrital zircon studies[J].American Journal of Science, 2008, 208(4):421-468. http://www.researchgate.net/publication/240797310_Precambrian_crustal_growth_of_Yangtze_Craton_as_revealed_by_detrital_zircon_studies [7] Qiu Y M, Gao S, McNaughton N J, et al.Frist evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics[J].Geology, 2000, 28(1):11-14. doi: 10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2 [8] Wang Z J, Wang J, Du Q D, et al.The evolution of the central Yangtze block during early neoarchean time:Evidence from geochronology and geochemistry[J].Joural of Asian Earth Science, 2013, 77(15):31-44. [9] Wang Z J, Wang J, Du Q D, et al.Mature archean continental, geochronology and geochemistry[J].Chinese Science Bulletin, 2013, 58(19):2360-2369. doi: 10.1007/s11434-013-5668-7 [10] Wu Y B, Zheng Y F, Gao S, et al.Zircon U-Pb age and trace evidence for paleoproterozoic granulite-facies metamorphism and archean crustal rocks in the Dabie orogen[J].Lithos, 2008, 101(3/4):308-322. [11] Wu Y B, Gao S, Zhang H F, et al.Geochemistry and zircon U-Pb geochronology of paleoproterozoic arc related granitoid in the northwestern Yangtze block and its geological implications[J].Precambrian Research, 2012, 200/203:26-37. doi: 10.1016/j.precamres.2011.12.015 [12] Chen K, Gao S, Wu Y B, et al.2.6-2.7 Ga crustal growth in Yangtze craton, south China[J].Precambrian Research, 2013, 224:472-490. doi: 10.1016/j.precamres.2012.10.017 [13] Gao S, Yang J, Zhou L, et al.Age and growth of the archean kongling terrain, south China, with Emphasis on 3.3 Ga granitoid gneisses[J].American Journal of Science, 2011, 311(2):153-182. doi: 10.2475/02.2011.03 [14] Guo J L, Wu Y B, Gao S, et al.Episodic paleoarchean-paleoproterozoic (3.3-2.0 Ga) granitoid magmatism in Yangtze craton, south China:Implications for Late Archean tectonics[J].Precambrian Research, 2015, 270:246-266. doi: 10.1016/j.precamres.2015.09.007 [15] Zhang S B, Zheng Y F, Wu Y B, et al.Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of archean crust in south China[J].Earth and Planetary Science Letters, 2006, 252(1/2):56-71. [16] Jiao W F, Wu Y B, Yang S H, et al.The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition[J].Science in China Series D:Earth Sciences, 2009, 59(2):1393-1399. [17] Zhou G Y, Wu Y B, Gao S, et al.The 2.65 Ga a-type granite in the northeastern Yangtze craton:Petrogenesis and geological implications[J].Prcambrian Research, 2015, 258:247-259. doi: 10.1016/j.precamres.2015.01.003 [18] 韩润生, 王峰, 胡煜昭, 等.会泽型(HZT)富锗银铅锌矿床成矿构造动力学研究及年代学约束[J].大地构造与成矿学, 2014, 38(4):758-771. http://www.cnki.com.cn/Article/CJFDTotal-DGYK201404003.htm [19] Hu Z C, Zhang W, Liu Y S, et al."Wave" signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis:Application to lead isotope analysis[J].Analytical Chemistry, 2015, 87(2):1152-1157. doi: 10.1021/ac503749k [20] Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J].Chemical Geology, 2008, 257(1/2):34-43. [21] Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J].Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082 [22] Ludwig K R.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel[M].California, Berkeley:Berkeley Geochronology Center, 2003:39. [23] Russell W A, Papanastassiou D A, Tombrello T A.Ca isotope fractionation on the earth and other solar system materials[J].Geochimica et Cosmochimica Acta, 1978, 42(8):1075-1090. doi: 10.1016/0016-7037(78)90105-9 [24] Thirlwall M F.Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis[J].Chemical Geology, 1991, 94(2):85-104. doi: 10.1016/S0009-2541(10)80021-X [25] Li C F, Li X H, Li Q L, et al.Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme[J].Analytica Chimica Acta, 2012, 727(10):54-60. [26] Tanaka T, Togashi S, Kamioka H, et al.Jndi-1:A neodymium isotopic reference in consistency with lajolla neodymium[J].Chemical Geology, 2000, 168(3/4):279-281. [27] Weis D, Kieffer B, Maerschalk C, et al.High-precision isotopic characterization of USGS reference materials by TIMs and MC-ICP-MS[J].Geochemistry Geophysics Geosystems, 2006, 7(8):139-149. doi: 10.1029/2006GC001283/full [28] Hu Z C, Liu Y S, Gao S, et al.A "wire" signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2012, 78:50-57. doi: 10.1016/j.sab.2012.09.007 [29] Hu Z C, Liu Y S, Gao S, et al.Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2012, 27(9):1391-1399. doi: 10.1039/c2ja30078h [30] Fisher C M, Vervoort J D, Hanchar J M.Guidelines for reporting zircon Hf isotopic data by LA-MC-ICP MS and potential pitfalls in the interpretation of thesedata[J].Chemical Geology, 2014, 363:125-133. doi: 10.1016/j.chemgeo.2013.10.019 [31] Blichert-Toft J, Chauvel C, Albarède F.Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS[J].Contributions to Mineralogy and Petrology, 1997, 127:248-260. doi: 10.1007/s004100050278 [32] Halla J, Hunen J V, Heilimo E, et al.Geochemical and numerical constraints on Neoarchean plate tectonics[J].Precambrian Research, 2009, 174:155-162. doi: 10.1016/j.precamres.2009.07.008 [33] Haskin L A, Haskin M A, Frey F A, et al.Relative and absolute terrestrial abundances of the rare earths[C]//Ahrens L H.Origin and distribution of the elements: A volume in international series of monographs in earth sciences.Oxford: Pergamon Press, 1968: 889-911. [34] Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society, London, Special Publication, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [35] Liu Y, Yang K G, Polat A, et al.Reconstruction of the cryogenian palaeogeography in the Yangtze domain:Constraints from detrital age patterns[J].Geological Magzine, 2019, 156(7):1247-1264. doi: 10.1017/S0016756818000535 [36] Condie K C.TTGs and adakites:Are they both slab melts?[J].Lithos, 2005, 80:33-44. doi: 10.1016/j.lithos.2003.11.001 [37] Foley S, Tiepolo M, Vannucci R.Growth of early continental crust controlled by melting of amphibolites in subduction zones[J].Nature, 2002, 417(6891):837-840. doi: 10.1038/nature00799 [38] Moyen J F.The composite Archaean grey gneisses:Petrological significance and evidence for a non-uniqu tectonic setting for Archaean crustal growth[J].Lithos, 2011, 123(1/4):21-36. http://www.sciencedirect.com/science/article/pii/S0024493710002665 [39] Hoffmann J E, Munker C, Naeraa T, et al.Mechanisms of Archean crust formation inferred from high- precision HFSE systematics in TTGs[J].Geochimica et Cosmochimica Acta, 2011, 75(15):4157-4178. doi: 10.1016/j.gca.2011.04.027 [40] 洪涛, 游军, 吴楚, 等.滇西桃花花岗斑岩中新太古代古元古代锆石年龄信息:对扬子板块西缘基底时代的约束[J].岩石学报, 2015, 31(9):2583-2596. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201509009.htm [41] Martin H.Petrogenesis of archaean trondhjemites, tonalites and granodiorites from eastern finland:major and trace elements geochemistry[J].Journal of Petrology, 1987, 28(5):921-953. doi: 10.1093/petrology/28.5.921 [42] Moyen J F, Stevens G.Experimental constraints on TTG petrogenesis: Implications for Archean Geodynamics[C]//Benn K, Mareschal J C, Condie K C.Archean geodynamics and environments.Geophysical monograph 164.Washington, DC: American Geophysical Union, 2006. [43] Arth J G, Barker F.Rare-earth partitioning between hornblende and dacitic liquid and implications for the genesis of trondhjemitic-tonaliticmagmas[J].Geology, 1976, 4(9):534-536. doi: 10.1130/0091-7613(1976)4<534:RPBHAD>2.0.CO;2 [44] Barker F, Arth J G.Generation of trondhjemitic-tonalitic liquids and Archaean bimodal trondhjemite-basaltsuites[J].Geology, 1976, 4(10):596-600. doi: 10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2 [45] White R V, Tarney J, Kerr A C, et al.Modification of an oceanic plateau, Aruba, Dutch Caribbean:Implications for the generation of continental crust[J].Lithos, 1999, 46:43-68. doi: 10.1016/S0024-4937(98)00061-9 [46] Weiberg R F, Hasalová P.Water-fluxed melting of the continental curst:A Review[J].Lithos, 2015, 212/215:158-188. doi: 10.1016/j.lithos.2014.08.021 [47] 吴鸣谦, 左梦璐, 张德会, 等.TTG岩套的成因及其形成环境[J].地质论评, 2014, 60(3):503-514. [48] 谢燮, 李文明, 孙吉明, 等.新疆北山地区白山镁铁岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其找矿意义[J].地质科技情报, 2018, 37(6):11-12. [49] 孟德磊, 贾小辉, 谢国刚, 等.粤南长蛇山分异Ⅰ型花岗岩的年代学、地球化学特征及其构造意义[J].地质科技情报, 2019, 38(4):193-204. [50] Arth J G, Barker F, Peterman Z E, et al.Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of Southwest Finland and its implications for the origin of tonalitic and trondhjemitic magmas[J].Journal of Petrology, 1978, 19(2):289-316. doi: 10.1093/petrology/19.2.289 [51] Drummond M S, Defant M J.A model for trondhjemite-tonalitedacite genesis and crustal growth via slab melting:Archean to modern comparisons[J].Journal of Geophysical Research, 1990, 95(B13):21503-21521. doi: 10.1029/JB095iB13p21503 [52] Drummond M S, Defant M J, Kepezhinskas P K.Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas[J].Transactions of the Royal Society of Edinburgh:Earth Sciences, 1996, 87(1/2):205-215. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8345451&fulltextType=RA&fileId=S0263593300006611 [53] 张华锋, 王浩铮, 豆敬兆, 等.华北克拉通怀安陆块新太古代低铝和高铝TTG片麻岩的地球化学特征与成因[J].岩石学报, 2015, 31(6):1518-1534. http://d.wanfangdata.com.cn/Periodical/ysxb98201506003 [54] 杨坤光, 何良伦, 刘雨, 等.黔西逆冲滑脱构造及其对铅锌矿床的控制[J].地质科技通报, 2020, 39(1):149-156. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9935.shtml [55] Zong K Q, Klemd R, Yuan Y, et al.The assembly of Rodinia:The correlation of early Neoproterozoic (ca.900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J].Precambrian Research, 2017, 290:32-48. doi: 10.1016/j.precamres.2016.12.010 [56] Barker F, Arth J G, Peterman Z E, et al.The 1.7- to 1.8-b.y.-old trondhjemites of southwestern Colorado and northern New Mexico:Geochemistry and depths of genesis[J].Geological Society of America Bulletin, 1976, 87(2):189-198 doi: 10.1130/0016-7606(1976)87<189:TTBTOS>2.0.CO;2 [57] Barker F.Trondhjemites: Definition, environment and hypotheses oforigin[C]//Barker F.Trondhjemites dacites and related rocks.Amsterdam: Elsevier, 1979: 1-12. -