留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同冷却方式下高温花岗岩巴西劈裂及声发射特性试验研究

王亚超 窦斌 喻勇 郑君 田红 刘贺娟

王亚超, 窦斌, 喻勇, 郑君, 田红, 刘贺娟. 不同冷却方式下高温花岗岩巴西劈裂及声发射特性试验研究[J]. 地质科技通报, 2022, 41(3): 200-207. doi: 10.19509/j.cnki.dzkq.2021.0028
引用本文: 王亚超, 窦斌, 喻勇, 郑君, 田红, 刘贺娟. 不同冷却方式下高温花岗岩巴西劈裂及声发射特性试验研究[J]. 地质科技通报, 2022, 41(3): 200-207. doi: 10.19509/j.cnki.dzkq.2021.0028
Wang Yachao, Dou Bin, Yu Yong, Zheng Jun, Tian Hong, Liu Hejuan. Experimental study on Brazilian split test and acoustic emission characteristics of high temperature granite under different cooling methods[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 200-207. doi: 10.19509/j.cnki.dzkq.2021.0028
Citation: Wang Yachao, Dou Bin, Yu Yong, Zheng Jun, Tian Hong, Liu Hejuan. Experimental study on Brazilian split test and acoustic emission characteristics of high temperature granite under different cooling methods[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 200-207. doi: 10.19509/j.cnki.dzkq.2021.0028

不同冷却方式下高温花岗岩巴西劈裂及声发射特性试验研究

doi: 10.19509/j.cnki.dzkq.2021.0028
基金项目: 

国家重点研发计划 2019YFB1504204

中国地质大学2019—2020学年度教学实验室开放基金资助项目 SKJ2019075

国家自然科学基金项目 41674180

详细信息
    作者简介:

    王亚超(1997—),男,现正攻读地质工程专业硕士学位,主要从事地热能开发利用工作。E-mail: 743657451@qq.com

    通讯作者:

    郑君(1987—),女,副教授,主要从事地热能开发利用以及钻进自动化研究及教学工作。E-mail: junzheng@cug.edu.cn

  • 中图分类号: P588.13+1

Experimental study on Brazilian split test and acoustic emission characteristics of high temperature granite under different cooling methods

  • 摘要:

    干热岩地热开发中的钻井、储层压裂及热交换等环节均涉及高温岩石冷却的问题,为揭示其中岩石损伤演化规律,基于巴西劈裂试验和声发射技术,研究了不同高温及冷却方式对花岗岩抗拉性质的影响。结果表明:①25~600℃下花岗岩抗拉强度随温度升高而下降,遇水冷却使抗拉强度进-步下降并使其开始大幅下降的温度阈值提前到200,500℃后抗拉强度对遇水冷却更敏感。②荷载达到峰值,声发射累计振铃计数突增,岩样内形成断裂区;受遇水冷却影响,岩样的振铃计数峰值和能量峰值有所下降,间接反映岩石内裂纹更发育,200~300℃时降幅均较大,300℃时和500℃后花岗岩对热处理方式较敏感。③花岗岩破裂面随温度升高由平整向粗糙曲折变化,由脆性向延性转变,遇水冷却促进岩石破裂并促使脆性向延性转变的温度区间提前。研究结果为地热开采中高温岩石的稳定性评价提供理论参考。

     

  • 图 1  试验设备及流程示意图

    Figure 1.  Test equipment and process diagram

    图 2  高温花岗岩冷却后抗拉强度与温度的关系

    Figure 2.  Relationship between temperature and tensile strength of high temperature granite after cooling

    图 3  400℃花岗岩冷却后拉应力和累计振铃计数与位移的关系

    Figure 3.  Relationship between tensile stress, cumulative ringing count and displacement of 400℃ granite after cooling

    图 4  声发射振铃计数峰值随温度的变化

    Figure 4.  Changes in peak value of ring count with temperature

    图 5  振铃计数峰值降幅及能量峰值降幅随温度的变化

    Figure 5.  Changes in peak drop of ringing count and peak drop of energy with temperature

    图 6  声发射能量峰值随温度的变化

    Figure 6.  Changes in peak energy with temperature

    图 7  高温花岗岩冷却后巴西劈裂破坏图

    Figure 7.  Brazilian splitting failure diagram of high temperature granite after cooling

    表  1  处理后花岗岩巴西劈裂试验结果

    Table  1.   Brazilian splitting test results of granite after treatment

    温度/℃ 抗拉强度平均值/MPa
    自然冷却 遇水冷却
    25 6.14 6.16
    200 6.08 5.89
    300 5.89 5.15
    400 4.85 4.19
    500 4.02 3.08
    600 1.86 1.10
    下载: 导出CSV

    表  2  花岗岩劈裂线粗糙度系数JRC

    Table  2.   Fracture line roughness coefficient JRC of granite

    温度/℃ 自然冷却 遇水冷却
    L/mm H/mm JRC L/mm H/mm JRC
    25 11.72 0.92 3.911 11.42 0.90 3.917
    200 13.19 1.08 4.081 10.72 0.88 4.114
    300 21.66 1.92 4.432 15.68 1.55 5.054
    400 17.23 1.77 5.274 10.66 1.14 5.539
    500 13.40 1.58 6.177 11.19 1.34 6.284
    600 12.07 1.49 6.501 16.46 2.06 6.547
    下载: 导出CSV
  • [1] 李德威, 王焰新. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学: 中国地质大学学报, 2015, 40(11): 1858-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511008.htm

    Li D W, Wang Y X. Major issues of research and development of hot dry rock geothermal energy[J]. Journal of Earth Science: Journal of China University of Geosciences, 2015, 40(11): 1858-1869(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511008.htm
    [2] 马峰, 蔺文静, 郎旭娟, 等. 我国干热岩资源潜力区深部热结构[J]. 地质科技情报, 2015, 34(6): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506025.htm

    Ma F, Lin W J, Lang X J, et al. Deep geothermal structures of potential hot dry rock resources area in China[J]. Geological Science and Technology Information, 2015, 34(6): 176-181(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506025.htm
    [3] 肖鹏, 窦斌, 田红, 等. 开采海洋区域干热岩的可行性探讨[J]. 海洋地质前沿, 2018, 34(8): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201808007.htm

    Xiao P, Dou B, Tian H, et al. Discussion on the feasibility of mining dry hot rock in marine area[J]. Frontiers of Marine Geology, 2018, 34(8): 55-60(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201808007.htm
    [4] 陈东灿, 窦斌, 田红, 等. 基于花岗闪长岩矿物成分的热导率预测模型[J]. 地质科技情报, 2019, 38(2): 262-266. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902031.htm

    Chen D C, Dou B, Tian H, et al. Thermal conductivity prediction model based on mineral composition of granodiorite[J]. Geological Science and Technology Information, 2019, 38(2): 262-266(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902031.htm
    [5] 窦斌, 高辉, 周刚, 等. 我国发展增强型地热开采技术所面临的机遇与挑战[J]. 地质科技情报, 2014, 33(5): 208-210. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405032.htm

    Dou B, Gao H, Zhou G, et al. Opportunities and challenges of developing enhanced geothermal exploitation technology in China[J]. Geological Science and Technology Information, 2014, 33(5): 208-210(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405032.htm
    [6] 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报: 地球科学版, 2016, 46(4): 1139-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htm

    Xu T F, Yuan Y L, Jiang Z J, et al. Hot dry rock resources and enhanced geothermal engineering: International experience and China's prospect[J]. Journal of Jilin University: Earth Science Edition, 2016, 46(4): 1139-1152(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htm
    [7] 张炜, 许天福, 吕鹏, 等. 二氧化碳增强型地热系统的研究进展[J]. 地质科技情报, 2013, 32(3): 177-182. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201303028.htm

    Zhang W, Xu T F, Lü P, et al. A review of carbon dioxide-based enhanced geothermal system[J]. Geological Science and Technology Information, 2013, 32(3): 177-182(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201303028.htm
    [8] 薛卉, 舒彪, 陈科平, 等. CO2基增强型地热系统中流体-花岗岩相互作用研究进展及展望[J]. 地质科技通报, 2021, 40(3): 12-19. doi: 10.19509/j.cnki.dzkq.2021.0021

    Xue H, Shu B, Chen K P, et al. Research progress of fluid-granite interaction in CO2 based enhanced geothermal system[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 12-19(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0021
    [9] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    Wang J Y, Hu S B, Pang Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32): 25-31(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2012.32.002
    [10] 徐超, 窦斌, 田红, 等. 二氧化碳爆破致裂建造增强型地热系统热储层工艺探讨[J]. 地质科技情报, 2019, 38(5): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905027.htm

    Xu C, Dou B, Tian H, et al. Discussion on technology of building enhanced geothermal system thermal reservoir by carbon dioxide blasting[J]. Geological Science and Technology Information, 2019, 38(5): 247-252(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905027.htm
    [11] Gérard A, Genter A, Kohl T, et al. The deep EGS(Enhanced Geothermal System) project at Soultz-sous-Forêts(Alsace, France)[J]. Geothermics, 2006, 35(5): 473-483.
    [12] Cui G D, Ren S R, Dou B, et al. Geothermal energy exploitation from depleted high-temperature gas reservoirs by recycling CO2: The superiority and existing problems[J]. Geoscience Frontiers, 2021, 12(6): 434-449.
    [13] Cui G D, Pei S F, Rui Z H, et al. Whole process analysis of geothermal exploitation and power generation from a depleted high-temperature gas reservoir by recycling CO2[J]. Energy, 2021, 217: 119340. doi: 10.1016/j.energy.2020.119340
    [14] Zhang W, Sun Q, Hao S, et al. Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment[J]. Applied Thermal Engineering, 2016, 98: 1297-1304. doi: 10.1016/j.applthermaleng.2016.01.010
    [15] 靳佩桦, 胡耀青, 邵继喜, 等. 急剧冷却后花岗岩物理力学及渗透性质试验研究[J]. 岩石力学与工程学报, 2018, 37(11): 2556-2564. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201811014.htm

    Jin P Y, Hu Y Q, Shao J X, et al. Experimental study on physico-mechanics and transport properties of granite subjected to rapid cooling[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2556-2564(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201811014.htm
    [16] Kumari W G P, Beaumont D M, Ranjith P G, et al. An experimental study on tensile characteristics of granite rocks exposed to different high-temperature treatments[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2019, 5(1): 47-64. doi: 10.1007/s40948-018-0098-2
    [17] Shao S, Wasantha P L P, Ranjith P G, et al. Effect of cooling rate on the mechanical behavior of heated Strathbogie granite with different grain sizes[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 381-387. doi: 10.1016/j.ijrmms.2014.04.003
    [18] 梁铭, 张绍和, 舒彪. 不同冷却方式对高温花岗岩巴西劈裂特性的影响[J]. 水资源与水工程学报, 2018, 29(2): 186-193. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201802031.htm

    Liang M, Zhang S H, Shu B, et al. Effect of different cooling ways on Brazilian tension characteristics of heat-treated granite[J]. Journal of Water Resources and Water Engineering, 2018, 29(2): 186-193(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201802031.htm
    [19] 郤保平, 赵阳升. 600℃内高温状态花岗岩遇水冷却后力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(5): 892-898. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005007.htm

    Xi B P, Zhao Y S. Experimental research on mechanical properties of water-cooled granite under high temperatures with in 600℃[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 892-898(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005007.htm
    [20] 朱振南, 田红, 董楠楠, 等. 高温花岗岩遇水冷却后物理力学特性试验研究[J]. 岩土力学, 2018, 39(增刊2): 169-176. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2025.htm

    Zhu Z N, Tian H, Dong N N, et al. Experimental study of physico-mechanical properties of heat-treated granite by water cooling[J]. Rock and Soil Mechanics, 2018, 39(S2): 169-176(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2025.htm
    [21] 喻勇, 徐达, 窦斌, 等. 高温花岗岩遇水冷却后可钻性试验研究[J]. 地质科技情报, 2019, 38(4): 287-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904031.htm

    Yu Y, Xu D, Dou B, et al. Experimental study on drillability of high temperature granite after water cooling[J]. Geological Science and Technology Information, 2019, 38(4): 287-292(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904031.htm
    [22] 吴贤振, 刘建伟, 刘祥鑫, 等. 岩石声发射振铃累计计数与损伤本构模型的耦合关系探究[J]. 采矿与安全工程学报, 2015, 32(1): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201501006.htm

    Wu X Z, Liu J W, Liu X X, et al. Study on the coupled relationship between AE accumulative ring-down count and damage constitutive model of rock[J]. Journal of Mining and Safety Engineering, 2015, 32(1): 28-34(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201501006.htm
    [23] Zhao X G, Cai M, Wang J, et al. Damage stress and acoustic emission characteristics of the Beishan granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 64: 258-269. doi: 10.1016/j.ijrmms.2013.09.003
    [24] Wang C, Xie J, Liu J, et al. Deformation and acoustic emission characteristics of cracked granite during creep[J]. Advances in Materials Science and Engineering, 2020, 7075287.
    [25] 武晋文, 赵阳升, 万志军, 等. 中高温三轴应力下鲁灰花岗岩热破裂声发射特征的试验研究[J]. 岩土力学, 2009, 30(11): 3331-3336. doi: 10.3969/j.issn.1000-7598.2009.11.019

    Wu J W, Zhao Y S, Wan Z J, et al. Experimental study of acoustic emission characteristics of granite thermal cracking under middle-high temperature and triaxial stress[J]. Rock and Soil Mechanics, 2009, 30(11): 3331-3336(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.11.019
    [26] Fairhurst C E, Hudson J A. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3): 279-289. doi: 10.1016/S0148-9062(99)00006-6
    [27] 崔翰博, 唐巨鹏, 姜昕彤. 自然冷却和遇水冷却后高温花岗岩力-声特性试验研究[J]. 固体力学学报, 2019, 40(6): 571-582. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201906005.htm

    Cui H B, Tang J P, Jiang X T. Experimental study on mechanical and acoustic characteristics of high-temperature granite after natural cooling and water cooling[J]. Chinese Journal of Solid Mechanics, 2019, 40(6): 571-582(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201906005.htm
    [28] 郭彦双, 朱维申, 李术才, 等. 不同荷载作用下拉破裂的声发射特征研究[J]. 岩土力学, 2006, 27(增刊2): 1055-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2006S2064.htm

    Guo Y S, Zhu W S, Li S C, et al. Acoustic emission properties of tensile fracture under different load patterns[J]. Rock and Soil Mechanics, 2006, 27(S2): 1055-1058(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2006S2064.htm
    [29] 吴刚, 王德咏, 翟松韬. 单轴压缩下高温后砂岩的声发射特征[J]. 岩土力学, 2012, 33(11): 3237-3242. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201211006.htm

    Wu G, Wang D Y, Zhai S T. Acoustic emission characteristics of sandstone after high temperature under uniaxial compression[J]. Rock and Soil Mechanics, 2012, 33(11): 3237-3242(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201211006.htm
    [30] 赵兴东, 唐春安, 李元辉, 等. 花岗岩破裂全过程的声发射特性研究[J]. 岩石力学与工程学报, 2006, 25(增刊2): 3673-3678. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2052.htm

    Zhao X D, Tang C A, Li Y H, et al. Study on AE characteristics under uniaxial compression loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3673-3678(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2052.htm
    [31] 谢和平, Pariseau W G. 岩石节理粗糙系数(JRC)的分形估计[J]. 中国科学: B辑, 1994, 24(5): 524-530. doi: 10.3321/j.issn:1006-9240.1994.05.003

    Xie H P, Pariseau W G. Fractal estimation of joint roughness coefficient(JRC) of rock[J]. Science in China: Series B, 1994, 24(5): 524-530(in Chinese with English abstract). doi: 10.3321/j.issn:1006-9240.1994.05.003
    [32] 支乐鹏, 许金余, 刘军忠, 等. 花岗岩高温后的超声特性及力学性能研究[J]. 地下空间与工程学报, 2012, 8(4): 716-721. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201204008.htm

    Zhi L P, Xu J Y, Liu J Z, et al. Research on ultrasonic characteristics and mechanical properties of granite under post-high temperature[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(4): 716-721(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201204008.htm
    [33] 翟松韬, 吴刚, 张渊, 等. 高温作用下花岗岩的声发射特征研究[J]. 岩石力学与工程学报, 2013, 32(1): 126-134. doi: 10.3969/j.issn.1000-6915.2013.01.018

    Zhai S T, Wu G, Zhang Y, et al. Research on acoustic emission characteristics of granite under high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 126-134(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2013.01.018
    [34] Hoek E, Martin C D. Fracture initiation and propagation in intact rock: A review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(4): 287-300. doi: 10.1016/j.jrmge.2014.06.001
    [35] Kumari W G P, Ranjith P G, Perera M S A, et al. Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments[J]. Engineering Geology, 2017, 229: 31-33. doi: 10.1016/j.enggeo.2017.09.012
    [36] Kim K, Kemeny J, Nickerson M. Effect of rapid thermal cooling on mechanical rock properties[J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2005-2019. doi: 10.1007/s00603-013-0523-3
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  652
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-23

目录

    /

    返回文章
    返回