Structural characteristics of Jan Mayen microcontinent and tectonic evolution model of volcanic passive margin in distal domain
-
摘要: 随着全球油气勘探的不断深入,北大西洋极地逐渐成为油气勘探研究的前沿领域,而扬马延矿区勘探程度极低。基于中海油冰岛矿区新采集的地震及重磁资料,结合其他有关扬马延微陆块最新的研究资料,开展了扬马延微陆块的地层和构造特征分析,以及与共轭盆地的对比,建立了扬马延火山型被动陆缘远端带的构造演化模式。研究表明:位于北大西洋格陵兰与挪威之间海域的扬马延微陆块,与北大西洋两侧陆架盆地古生代-中生代地层具有共轭特征;构造呈NE-SE向展布,发育拆离断裂体系,与挪威西部陆架盆地中生界拆离断裂体系具有相似性;构造内部受岩浆侵入及喷出等强烈影响,发育向海倾斜反射层(SDR)及岩浆溢流相沉积。在上述研究基础上,探讨了扬马延微陆块与格陵兰古陆和波罗的海古陆拉断分离的构造演化过程,认为扬马延在古生代-中生代与格陵兰古陆和波罗的海古陆为一体,在经历了古生代-中生代陆内碰撞、弱伸展到陆内裂谷和陆内热沉降后,受北大西洋拉开影响,经历了古近纪和新近纪火山型被动陆缘远端带的形成演化过程,在55 Ma第一次洋中脊扩张期,与波罗的海古陆挪威陆缘盆地分离,在25 Ma第二次洋脊跃迁时期,新生洋脊扩张导致扬马延微陆块与格陵兰古陆分离,在沉积与构造上开始与北大西洋火山型被动陆缘盆地产生分异,最终扬马延微陆块成为孤立在洋壳上的一个"弃子"。本次关于扬马延微陆块的研究揭示了火山型被动陆缘远端带在岩浆活动、拆离断裂作用下,减薄-破裂的残余陆壳及内部新生洋壳的构造面貌及板块构造背景下的演化过程。Abstract: With the deepening of global oil and gas exploration research, the North Atlantic polar region has gradually become the frontier of oil and gas exploration, but the exploration degree of Jan Mayan micro-continent is very low.The study on stratigraphy, structures and tectonic evolution modelling of the Jan Mayan microcontinent (JMMC)is presented in the paper based on seismic, gravity and magnetic data newly acquired by CNOOC in its contract area and other new published papers which show the most update progress of the JMMC. Located in the central part of the Norwegian-Greenland Sea of the North Atlantic, the JMMC is conjugate with the Jameson Land Basin on the Greenland continent margin and the Vøring Basin on the Norwegian shelf margin of the Beltic Continent in accordance with similar Paleozoic-Mesozoic stratigraphy. The JMMC extends southwards from the Jan Mayan fracture zone towards northern Iceland and its architecture shows the characteristics of detachment faults which is similar to the Mesozoic fault system of the Vøring Basin. The distribution of SDR, volcanic intrusion and explosion can be interpreted on the seismic data which indicates the JMMC is the distal domain of the volcanic passive margin in the North Atlantic mostly during the Cenozoic age. The tectonic evolution model is setup by analogic basin analysis and is supposed to start from the Paleozoic-Mesozoic orogeny to rifting, and then be influenced by the twice seafloor spreading of the age 55 Ma and 25 Ma. The first seafloor spreading of 55 Ma age caused the continental crust break-up and formed the volcanic passive margin between the Greenland and Beltic, especially the JMMC's separating from the conjugate Norwegian shelf margin. The second seafloor spreading of 25 Ma age caused the oceanic ridge jump due to the Iceland mantle plume drifting off the Greenland and also caused the JMMC's separation from the Greenland Continent as an 'abandoned orphan' floating on the oceanic crust. The meaning of this study is to discuss kinematic evolution of residual continental crust detached from the distal domain of the plate and to indicate lithospheric extension and break while the embryonic oceanic crust generating through the detachment movements and mantle upwelling.
-
图 1 扬马延微陆块区域位置及研究工区资料数据图(图a引自文献[1],有修改)
Figure 1. Location map of the Jan Mayan microcontinent and data map of the study area
图 6 北大西洋大洋中脊构造演化史(引自文献[24], 有修改)
Figure 6. Evolution of mid-oceanic ridge in the North Atlantic Ocean
表 1 扬马延微陆块与共轭盆地地层厚度对比
Table 1. Correlation of strata thickness between Jan Mayen microcontient and conjugate basins
扬马延① Jameson Land盆地② Vøring盆地② 古近系和新近系 岩性 玄武岩、泥岩、砂质泥岩 砂岩、泥岩、火山侵入岩 玄武岩、火山侵入岩、砂岩、泥岩 厚度/km 1~2 0~3 1~3 中生界 岩性 灰岩、砂岩(取样)) 灰岩、砂岩、砂质泥岩 灰岩、砂岩、泥岩 厚度/km 1~2 2~3 1~3 古生界 岩性 灰岩(取样) 灰岩、砂岩 灰岩、砂岩 厚度/km 0~3 2~10 1~3 注:①资料来源于重磁震联合反演及海底取样;②资料来源于IHS盆地库及收集到的地震资料 表 2 挪威陆架Vøring盆地构造分区要素
Table 2. Tectonic division elements of the Vøring Basin, Norwey
结构单元 发育部位 地壳厚度/km 拉伸系数 构造样式 沉积特征 近端带 靠陆侧物源区 20~30 < 1.2 高角度正断层 裂后期沉积薄 细颈化带 上陆坡 10~25 1.2~1.3 大型拆离断层 裂后期沉积厚 远端带 下陆坡 < 10 >3 拆离断层 沉积薄 边缘高地(洋陆转换带) 靠近洋壳 < 5 $ \gg $ 3 / 大洋核杂岩 -
[1] Gernigon L, Olesen O, Ebbing J, et al. Geophysical insights and early spreading history in the vicinity of the Jan Manyen Fracture Zone, Norwegian-Greenland Sea[J]. Tectonophysics, 2009, 268: 185-205. http://www.researchgate.net/profile/Carmen_Gaina/publication/222536885_Geophysical_insights_and_early_spreading_history_in_the_vicinity_of_the_Jan_Mayen_Fracture_Zone_NorwegianGreenland_Sea/links/0912f50b7bcda49b95000000.pdf [2] Barton C, Moos D, Blangy J P. Analysis of full waveform acoustic logging data at ODP Site 642: Outer Voring Plateau, Sites 642-644, 19 June 1985-23 August 1985[C]//Anon. Proceedings Ocean Drilling Program: Scientific Results, 1989, 104: 953-964. [3] Eldholm O, Thiede J, Taylor E. The Norwegian continental margin; tectonic, volcanic, and paleoenvironmental framework, Sites 642-644, 19 June 1985-23 August 1985[C]//Anon. Proceedings Ocean Drilling Program, Scientific Results, 1989, 104: 5-26. [4] Larsen H C. Geological perspectives of the east Greenland continental margin[J]. Bulletin of Geological Society of Denmark, 1980, 29(1): 77-101. [5] Mosar J, Eide E A, Osmundsen P T, et al. Greenland-Norway separation: A geodynamic model for the North Atlantic[J]. Norwegian Journal of Geology, 2002, 82: 282-299. http://www.researchgate.net/profile/Jon_Mosar/publication/33681834_Greenland_-_Norway_separation_A_geodynamic_model_for_the_North_Atlantic/links/55d493a008ae1e6516636903 [6] Bird R T, Naar D F. Intrafransform origins of mid-ocean ridge microplates[J]. Geology, 1994, 22: 987-990. doi: 10.1130/0091-7613(1994)022<0987:IOOMOR>2.3.CO;2 [7] 张军东, 成林. 北大西洋扬马延海脊重力场特征研究[J]. 石化技术, 2017(2): 149-150. doi: 10.3969/j.issn.1006-0235.2017.02.115Zhang D J, Cheng L. Research on gravity anomaly characteristics of Yangmayan ridge gravity field of Northern Atlantic[J]. Petrochemical Industry Technology, 2017(2): 149-150(in Chinese with English abstract). doi: 10.3969/j.issn.1006-0235.2017.02.115 [8] 李进波, 张文, 赵亮, 等. 扬马延微陆块中部重力场及构造特征[J]. 地球物理学进展, 2018, 33(2): 467-472. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201802003.htmLi J B, Zhang W, Zhao L, et al. Gravity field and tectonic features in the middle area of the Jan Mayen microcontinent[J]. Progress in Geophysics, 2018, 33(2): 467-472(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201802003.htm [9] Carmen G, Laurent G, Philip B. Palaeocene-recent plate boundaries in the NE Atlantic and the formation of the Jan Mayan microcontinent[J]. Journal of the Geological Society, 2009, 166: 601-616. doi: 10.1144/0016-76492008-112 [10] Kuvaas B, Kodaira S. The formation of the Jan Mayen microcontinent: The missing piece in the continental puzzle between the More-Voring Basins and East Greenland[J]. First Break, 1997, 15(7): 239-247. http://www.researchgate.net/publication/275941736_The_formation_of_the_Jan_Mayen_microcontinent_The_missing_piece_in_the_continental_puzzle_between_the_More-Voring_Basins_and_East_Greenland [11] Kodaira S, Mjelde R, Gunnarsson K, et al. Structure of the Jan Mayen microcontinent and implications for its evolution[J]. Geophys Journal International, 1998, 132: 383-400. doi: 10.1046/j.1365-246x.1998.00444.x [12] Peron-Pinvidic G, Gernigon L, Gaina C, et al. Insights from the Jan Mayan system in the Norwegian-Greenland sea: I. Mapping of a microcontinent[J]. Geophysical Journal International, 2012, 191(2): 385-412. doi: 10.1111/j.1365-246X.2012.05639.x [13] Kandilarov A, Mjelde R, Pedersen R B, et al. The northern boundary of the Jan Mayen microcontinent, North Atlantic determined from ocean bottom seismic, multichannel seismic, and gravity data[J]. Marine Geophysical Research, 2012, 33: 55-76. doi: 10.1007/s11001-012-9146-4 [14] IHS. Jan Mayan Ridge Basin summary report[R]. (2020-12-01)[2021-01-04]. https://my.ihs.com/Energy/Products. [15] IHS. Voring Basin summary report[R]. 2020 December 1. https://my.ihs.com/Energy/Products. [16] IHS. Jameson Land Basin summary report[R]. (2020-12-01)[2021-01-04]. https://my.ihs.com/Energy/Products. [17] Blischke A, Stroker M S, Brandsdottir B, et al. The Jan Mayan microcontinent's Cenozoic stratigraphic succession and structural evoluation within the NE-Atlantic[J]. Marine and Petroleum Geology, 2019, 103: 702-737. doi: 10.1016/j.marpetgeo.2019.02.008 [18] Lundin E, Dore A G. Mid-Cenozoic post-breakup deformation in the 'passive' margins bordering the Norwegian-Greenland Sea[J]. Marine and Petroleum Geology, 2002, 19: 79-93. doi: 10.1016/S0264-8172(01)00046-0 [19] Peron-Pinvidic G, Gernigon L, Gaina C, et al. Insights from the Jan Mayen system in the Norwegian-Greenland Sea: II. Architecture of a microcontinent[J]. Geophysical Journal International, 2012, 191(2): 413-435. doi: 10.1111/j.1365-246X.2012.05623.x [20] Wernicke B. Uniform-sense normal simple shear of the continental lithosphere[J]. Canadian Journal of Earth Sciences, 1985, 22: 108-125. doi: 10.1139/e85-009 [21] Whitney D L, Teyssier C, Rey P, et al. Continental and oceanic core complexes[J]. Geological Society of American Bulletin, 2013, 125(3/4): 273-298. http://pubs.geoscienceworld.org/gsabulletin/article-pdf/125/3-4/273/418463/273.pdf [22] Foulger G R, Dore T, Emeleus H, et al. The Iceland microcontinent and a continental Greenland-Iceland-Faroe Ridge[J]. Earth-Science Reviews, 2020, 206: 102926. doi: 10.1016/j.earscirev.2019.102926 [23] 汪小妹, 曾志刚, 欧阳荷根, 等. 大洋橄榄岩的蛇纹岩化研究进展评述[J]. 地球科学进展, 2010, 25(6): 605-616.Wang X M, Zeng Z G, Ouyang H G, et al. Review of progress in serpentinization research of oceanic peridotites[J]. Advances in Earth Science, 2010, 26(6): 605-616(in Chinese with English abstract). [24] Henriksen N. Geological history of Greenland: Four billion years of earth evolution[R]. [S. l. ]: Geological Survey of Denmark and Greenland (GEUS), 2008: 1-272. [25] Saunders A D, Fitton J G, Kerr A C, et al. The North Atlantic Igneous Province[C]//Mahoney J J, Coffin M F. Large igneous provinces: Continental, oceanic and planetary flood volcanism. [S. l. ]: American Geophysical Union Monograph, 1997: 45-93. [26] Geoffroy L. Volcanic passive margins[J]. Comptes Rendus Geosciences, 2005, 337(16): 1395-1408. doi: 10.1016/j.crte.2005.10.006 [27] Ferrand T P. Transition from amagmatic to volcanic margin: Mantle exhumation in the Vøring Basin before the Icelandic plume influence[J]. Tectonophysics, 2020, 776: 228319. doi: 10.1016/j.tecto.2020.228319 [28] Mosar J. Scandinavia's North Atlantic passive margin[J]. Journal of Geophysical Research, 2003, 108(B8): 2360. doi: 10.1029/2002JB002134 [29] Muñoz-Barrera J M, Rotevatn A, Gawthorpe R L, et al. The role of structural inheritance in the development of high-displacement crustal faults in the necking domain of rifted margins: The Klakk fault complex, Frøya High, offshore mid-Norway[J]. Journal of Structureal Geology, 2020, 140: 104163. doi: 10.1016/j.jsg.2020.104163 [30] Saunders A D, Larsen H C, Fitton J G. Magmatic development of the southeast Greenland and margin and evolution of the Iceland plum: Geochemical constraints from LEG 152[C]//Saunders A D, Larsen H C, Wise S W Jr. Proceedings of the Ocean Drilling Program, Scientific Results. 1998, 152: 40. [31] Franke D, Klitzke P, Barckhausen U, et al. Polyphase magmatism during the formation of the Northern East Greenland continental margin[J]. Tectonics, 2019, 38(4): 2961-2982. doi: 10.1029/2019TC005552 [32] Geissler W H, Gaina C, Hopper J R, et al. Seismic volcanostratigraphy of the NE Greenland continental margin[C]//Pe'ron-Pinvidic G, Hopper J R, Stoker M S, et al. The NE Atlantic region: A reappraisal of crustal structure, tectonostratigraphy and magmatic evolution. London: Geological Society, 2016: 447. [33] Peron-Pinvidic G, Osmundsen P T. From orogeny to rifting: Insights from the Norwegian 'reactivation phase'[J]. Scientific Reports, 2020, 10: 14860. doi: 10.1038/s41598-020-71893-z [34] Gernigon L, Blischke A, Nasuti A, et al. Conjugate volcanic rifted margins, seafloor spreading, and microcontinent: Insights from new high-resolution aeromagnetic surveys in the Norway Basin[J]. Tectonics, 2015, 34(5): 907-933. doi: 10.1002/2014TC003717 [35] Zastrozhnov D, Gernigon L, Gogin I, et al. Regional structure and polyphased Cretaceous-Paleocene rift and basin development of the mid-Norwegian volcanic passive margin[J]. Marine and Petroleum Geology, 2020, 115: 104269. doi: 10.1016/j.marpetgeo.2020.104269 [36] 任建业, 庞雄, 雷超, 等. 被动陆缘洋陆转换带和演示圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 2015, 22(1): 102-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htmRen J Y, Pang X, Lei C, et al. Ocean and continent transition in passive continental margins and analysis of lithospheric extention and breakup process: Implication for research of the deepwater basins in the continental margins of South China Sea[J]. Earth Science Frontiers, 2015, 22(1): 102-114(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm [37] Torske T, Prestvik T. Mesozoic detachment faulting between Greenland and Norway: Inferences from Jan Mayen fracture zone system and associated alkalic volcanic rocks[J]. Geology (Boulder), 1991, 19(5): 481-484. doi: 10.1130/0091-7613(1991)019<0481:MDFBGA>2.3.CO;2 [38] Mosar J, Torsvik T H. Opening the Norwegian and Greenland Seas: Plate tectonics in Mid: Norway since Late Permian[C]//BATLAS: Mid Norway plate reconstruction atlas with global and North Atlantic perspectives. [S. l. ]: Geological Survey of Norway, 2002: 48-59. [39] Gaina C, Nasuti A, Kimbell G S, et al. Break-up and seafloor spreading domains in the NE Atlantic[C]//Pe'ron-Pinvidic G, Hopper J R, Stoker M S, et al. The NE Atlantic Region: A reappraisal of crustal structure, tectonostratigraphy and magmatic evolution. London: Geological of Society, 2017: 447. [40] Hamann N E, Whittaker R C, Stemmerik L. Geological development of the Northeast Greenland Shelf[C]//Petroleum Geology Conference Series 6. London: Geological Society, 2005: 887-902. [41] Banks G, Bernstein S, Salehi S, et al. Liverpool land basement high, Greenland: Visualizing inputs for fractured crystalline basement reservoir models[J]. GEU Bulletin, 2019, 43: e2019430204. http://www.researchgate.net/publication/334612123_Banks_et_al_2019_Liverpool_Land_Basement_High_Greenland_visualising_inputs_for_fractured_crystalline_basement_reservoir_models [42] Brekke H. The tectonic evolution of the Norwegian sea continental margin with emphasis on the Vøring and More Basins[J]. Geological Society of London, Special Publications, 2000, 167(1): 327-378. doi: 10.1144/GSL.SP.2000.167.01.13 [43] 陈亮, 赵红岩, 韩文明, 等. 毛塞几比盆地外陆架-陆坡区阿尔比阶-土伦阶沉积特征及成藏体系[J]. 地质科技通报, 2020, 39(4): 132-140. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10009.shtmlChen L, Zhao H Y, Han W M, et al. Sedimentary facies characteristics and accumulation systems of Albian-Turonian at the outer shelf-slope area of MSGB Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 132-140(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10009.shtml [44] 康洪全, 贾怀存, 程涛, 等. 南大西洋两岸含盐盆地裂谷层序油气地质特征与油气分布特征对比[J]. 地质科技情报, 2018, 37(4): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804015.htmKang H Q, Jia H C, Cheng T, et al. Comparison of petroleum geology and hydrocarbon accumulation of rift sequence in the salt basins on both sides of South Atlantic Ocean[J]. Geological Scinece and Technolody Information, 2018, 37(4): 113-119(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804015.htm [45] 赵宏超, 朱筱敏, 葛家旺, 等. 洋陆转换带类型特征和形成机理及其在南海北部的表现特征[J]. 地质科技情报, 2018, 37(4): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804007.htmZhao H C, Zhu X M, Ge J W, et al. Forming mechanism and types characteristics of ocean-continent transition and its performance in North South China Sea[J]. Geological Science and Technology Information, 2018, 37(4): 51-60(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804007.htm [46] 郭玲莉, 李三忠, 赵淑娟, 等. 洋-陆转换带类型与成因机制[J]. 地学前缘, 2017, 24(4): 320-328. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704035.htmGuo L L, Li S Z, Zhao S J, et al. Formation mechanism and types of ocean-continent transition zone[J]. Earth Science Frontiers, 2017, 24(4): 320-328(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704035.htm [47] Mosar J, Eide E A, Osmundsen P T, et al. Greenland-Norway separation: A geodynamic model for the North Atlantic[J]. Norwegian Journal of Geology, 2002, 82: 282-299. http://www.researchgate.net/profile/Jon_Mosar/publication/33681834_Greenland_-_Norway_separation_A_geodynamic_model_for_the_North_Atlantic/links/55d493a008ae1e6516636903