留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

砂岩含水层CO2封存中考虑盐沉淀反馈作用的数值模拟: 以鄂尔多斯盆地为例

高志豪 赵锐锐 成建梅

高志豪, 赵锐锐, 成建梅. 砂岩含水层CO2封存中考虑盐沉淀反馈作用的数值模拟: 以鄂尔多斯盆地为例[J]. 地质科技通报, 2022, 41(1): 269-277. doi: 10.19509/j.cnki.dzkq.2021.0073
引用本文: 高志豪, 赵锐锐, 成建梅. 砂岩含水层CO2封存中考虑盐沉淀反馈作用的数值模拟: 以鄂尔多斯盆地为例[J]. 地质科技通报, 2022, 41(1): 269-277. doi: 10.19509/j.cnki.dzkq.2021.0073
Gao Zhihao, Zhao Ruirui, Cheng Jianmei. Numerical simulation of CO2 sequestration in sandstone aquifers with feedback effect of salt precipitation: A case study of Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 269-277. doi: 10.19509/j.cnki.dzkq.2021.0073
Citation: Gao Zhihao, Zhao Ruirui, Cheng Jianmei. Numerical simulation of CO2 sequestration in sandstone aquifers with feedback effect of salt precipitation: A case study of Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 269-277. doi: 10.19509/j.cnki.dzkq.2021.0073

砂岩含水层CO2封存中考虑盐沉淀反馈作用的数值模拟: 以鄂尔多斯盆地为例

doi: 10.19509/j.cnki.dzkq.2021.0073
基金项目: 

国家自然科学基金项目 41402212

国家自然科学基金项目 U1911205

详细信息
    作者简介:

    高志豪(1998-), 男, 现正攻读水利工程专业硕士学位, 主要从事CO2地质封存和地下水数值模拟技术方面的研究工作。E-mail: 2322918434@qq.com

    通讯作者:

    赵锐锐(1984-), 男, 副教授, 主要从事CO2地质封存和地下水数值模拟技术方面的研究工作。E-mail: rr.zhao@cug.edu.cn

  • 中图分类号: P641

Numerical simulation of CO2 sequestration in sandstone aquifers with feedback effect of salt precipitation: A case study of Ordos Basin

  • 摘要: 盐沉淀是含水层CO2封存中需要关注的问题。当前,大多数数值模拟没有考虑盐沉淀引起的地层孔隙度和渗透率变化对流体流动的反馈作用。以鄂尔多斯盆地刘家沟组地层为例,利用TOUGH2软件建立了一个二维模型。通过修改程序源代码,使得模型能考虑盐沉淀对流体流动的反馈作用。模拟结果表明,刘家沟组地层在CO2注入20 a时,盐沉淀的反馈作用使得注入井附近地层压力提升达到了0.87MPa,储层注入性损失7.17%。地层水盐度对盐沉淀及其反馈作用的影响最大,CO2注入速度的影响次之,地层渗透率的影响最小。在地层水盐度较高时,固体盐饱和度显著增加,从而造成地层渗透率明显下降。当地层水盐度为0.24时,盐沉淀造成注入性损失45.32%,引起的地层压力提升达到了12.14MPa。因此,需要特别关注高盐度地层水引起的盐沉淀及其反馈作用。

     

  • 图 1  模型概况

    Figure 1.  Sketch of the model

    图 2  算例A 20 a时气体饱和度(Sg)分布

    Figure 2.  Distribution of the gas saturation Sg at 20 years for the case A

    图 3  算例A 20 a时固体饱和度(Ss)分布

    Figure 3.  Distribution of the solid saturation Ss at 20 years for the case A

    图 4  算例A 20 a时渗透率变化分布图

    Figure 4.  Distribution of the permeability variation at 20 years for the case A

    图 5  20 a时算例A地层压力(P)分布

    Figure 5.  Distribution of the formation pressure(P) at 20 years for the case A

    图 6  20 a时算例A中反馈与未反馈情况下地层压力差(ΔP)分布

    Figure 6.  Distribution of the formation pressure difference (ΔP) with and without feedback at 20 years for the case A

    图 7  算例A注入性相对变化(RIC)随时间的变化

    Figure 7.  Variation of relative injectivity change (RIC) for the case A

    图 8  20 a时算例B1、B4中反馈与未反馈情况下地层压力差(ΔP)分布

    Figure 8.  Distribution of the formation pressure difference (ΔP) with and without feedback at 20 years for the cases B1 and B4

    图 9  算例A、B1、B2、B3和B4注入性相对变化(RIC)随时间的变化

    Figure 9.  Variation of relative injectivity change(RIC) for the cases A, B1, B2, B3 and B4

    图 10  20 a时算例C1、C3中反馈与未反馈情况下地层压力差(ΔP)分布

    Figure 10.  Distribution of the formation pressure difference (ΔP) with and without feedback at 20 years for the cases C1 and C3

    图 11  算例A、C1、C2和C3注入性相对变化(RIC)随时间的变化

    Figure 11.  Variation of relative injectivity change(RIC) for the cases A, C1, C2 and C3

    图 12  20 a时算例D1、D4中反馈与未反馈情况下地层压力差分布

    Figure 12.  Distribution of the formation pressure difference with and without feedback at 20 years for the cases D1 and D4

    图 13  算例A、D1、D2、D3和D4注入性相对变化(RIC)随时间的变化

    Figure 13.  Variation of relative injectivity change(RIC) for the cases A, D1, D2, D3 and D4

    表  1  相对渗透率模型和毛细压力模型的参数设置

    Table  1.   Values of the parameter of the relative permeability model and capillary pressure model

    相对渗透率函数(VanGenuchten-Mualem和Corey模型) 毛细管压力函数(VanGenuchten模型)
    液态 $K_{\mathrm{r} 1}=\sqrt{S^{*}}\left\{1-\left(1-\left[S^{*}\right]^{1 / \lambda}\right)^{\lambda}\right\}^{2}$
    $S^{*}=\left(S_{1}-S_{1 {\rm{r}}}\right) /\left(S_{1 {\rm{s}}}-S_{1 {\rm{r}}}\right) \quad $
    形状参数λ=0.457
    残余液体饱和度Slr=0.30
    $P_{\text {cap }}=-P_{0}\left(\left[S^{*}\right]^{-1 / \lambda}-1\right)^{1-\lambda}$
    $S^{*}=\left(S_{1}-S_{1 {\rm{r}}}\right) /\left(S_{1 {\rm{s}}}-S_{1 {\rm{r}}}\right)$
    形状参数λ=0.457
    残余液体饱和度Slr=0
    气态 $\begin{aligned}K_{\mathrm{rg}}=(1-\hat S)^{2}\left(1-\hat S^{2}\right)\end{aligned}$
    $\hat S=\left(S_{1}-S_{\mathrm{lr}}\right) /\left(1-S_{\mathrm{lr}}-S_{\mathrm{gr}}\right)$
    残余气体饱和度Sgr=0.05
    进气压力P0=19.61 kPa
    毛细压力的最大值Pmax=1×107
    Pa
    注:Krl.液态相对渗透系数;Krg.气态相对渗透系数;S1.残余饱和度;Sls.残余固体饱和度;Slr.残余液体饱和度;Pcap.毛细管压力
    下载: 导出CSV

    表  2  不同算例的参数设置

    Table  2.   Values of the parameter in the different cases

    算例 地层参数设置 地层水盐度 CO2注入速率/(kg·s-1) 备注
    孔隙度 渗透率/10-3μm2
    A 0.1 2.81 0.06 3.170 基础算例
    B1 0.1 2.81 0.015 3.170 盐度减少4倍 评估盐度的影响
    B2 0.1 2.81 0.03 3.170 盐度减少2倍
    B3 0.1 2.81 0.12 3.170 盐度增加2倍
    B4 0.1 2.81 0.24 3.170 盐度增加4倍
    C1 0.1 5.62 0.06 3.170 渗透率增加2倍 评估渗透率的影响
    C2 0.1 8.43 0.06 3.170 渗透率增加3倍
    C3 0.1 11.24 0.06 3.170 渗透率增加4倍
    D1 0.1 2.81 0.06 1.585 CO2注入速率减少1/2 评估CO2注入速率的影响
    D2 0.1 2.81 0.06 2.378 CO2注入速率减少1/4
    D3 0.1 2.81 0.06 3.963 CO2注入速率增加1/4
    D4 0.1 2.81 0.06 4.755 CO2注入速率增加1/2
    下载: 导出CSV
  • [1] IPCC. Carbon dioxide capture and storage[M]. Cambridge: Cambridge University Press, 2005.
    [2] IEA. Energy technology perspectives[J]. International Energy Agency, 2008, 648: 2.
    [3] 曾荣树, 孙枢, 陈代钊, 等. 减少二氧化碳向大气层的排放: 二氧化碳地下储存研究[J]. 中国科学基金, 2004, 18(4): 196-200. doi: 10.3969/j.issn.1000-8217.2004.04.002

    Zeng R S, Sun S, Chen D Z, et al. Decrease carbon dioxide emission into the atmosphere: Underground disposal of carbon dioxide[J]. Bulletin of National Natural Science Foundation of China, 2004, 18(4): 196-200(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8217.2004.04.002
    [4] 李小春, 方志明, 魏宁, 等. 我国CO2捕集与封存的技术路线探讨[J]. 岩土力学, 2009, 30(9): 2674-2678. doi: 10.3969/j.issn.1000-7598.2009.09.022

    Li X C, Fang Z M, Wei N, et al. Discussion on technical roadmap of CO2 capture and storage in China[J]. Rock and Soil Mechanics, 2009, 30(9): 2674-2678(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.09.022
    [5] Ringrose P. The CCS hub in Norway: Some insights from 22 years of saline aquifer storage[J]. Energy Procedia, 2018, 146: 166-172. doi: 10.1016/j.egypro.2018.07.021
    [6] Furre A K, Eiken O, Alnes H, et al. 20 years of monitoring CO2-injection at Sleipner[J]. Energy Procedia, 2017, 114(1): 3916-3926. http://www.onacademic.com/detail/journal_1000040062919910_4d6e.html
    [7] 李小春, 刘延锋, 白冰, 等. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报, 2006, 25(5): 963-968. doi: 10.3321/j.issn:1000-6915.2006.05.015

    Li X C, Liu Y F, Bai B, et al. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 963-968(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2006.05.015
    [8] Bachu S, Adams J J. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Conversion and Management, 2003, 44(20): 3151-3175. doi: 10.1016/S0196-8904(03)00101-8
    [9] Bachu S, Gunter W, Perkins E. Aquifer disposal of CO2: Hydrodynamic and mineral trapping[J]. Energy Conversion and Management, 1994, 35(4): 269-279. doi: 10.1016/0196-8904(94)90060-4
    [10] Miri R, Hellevang H. Salt precipitation during CO2 storage: A review[J]. International Journal of Greenhouse Gas Control, 2016, 51: 136-147. doi: 10.1016/j.ijggc.2016.05.015
    [11] Pruess K, Müller N. Formation dry-out from CO2 injection into saline aquifers: 1. Effects of solids precipitation and their mitigation[J]. Water Resources Research, 2009: 45: W3402.
    [12] Lopez O, Youssef S, Estublier A, et al. Permeability alteration by salt precipitation: Numerical and experimental investigation using X-ray radiography[J]. E3S Web of Conferences, 2020, 146(A): 3001. http://www.researchgate.net/publication/339153218_Permeability_alteration_by_salt_precipitation_numerical_and_experimental_investigation_using_X-Ray_Radiography/download
    [13] He D, Jiang P X, Xu R N. Pore-scale experimental investigation of the effect of supercritical CO2 injection rate and surface wettability on salt precipitation[J]. Environmental Science & Technology, 2019, 53(24): 14744-14751.
    [14] Jie R, Wang Y, Zhang Y Q. A numerical simulation of a dry-out process for CO2 sequestration in heterogeneous deep saline aquifers[J]. Greenhouse Gases: Science and Technology, 2018, 8(6): 1090-1109. doi: 10.1002/ghg.1821
    [15] Yang Z H, Wang W N, Zhang C Y, et al. Experimental study of drying effects during supercritical CO2 displacement in a pore network[J]. Microfluidics and Nanofluidics, 2018, 22(9): 101. doi: 10.1007/s10404-018-2122-9
    [16] Jeddizahed J, Rostami B. Experimental investigation of injectivity alteration due to salt precipitation during CO2 sequestration in saline aquifers[J]. Advances in Water Resources, 2016, 96: 23-33. doi: 10.1016/j.advwatres.2016.06.014
    [17] Ghafoori M, Tabatabaei-Nejad S, Khodapanah E. Modeling rock-fluid interactions due to CO2 injection into sandstone and carbonate aquifer considering salt precipitation and chemical reactions[J]. Journal of Natural Gas Science and Engineering, 2016, 37: 523-538.
    [18] André L, Peysson Y, Azaroual M. Well injectivity during CO2 storage operations in deep saline aquifers—Part 2: Numerical simulations of drying, salt deposit mechanisms and role of capillary forces[J]. International Journal of Greenhouse Gas Control, 2013, 22: 301-312.
    [19] Peysson Y, André L, Azaroual M. Well injectivity during CO2 storage operations in deep saline aquifers—Part 1: Experimental investigation of drying effects, salt precipitation and capillary forces[J]. International Journal of Greenhouse Gas Control, 2013, 22: 300-391.
    [20] 柯怡兵, 李义连, 张炜, 等. 岩盐沉淀对咸水层二氧化碳地质封存注入过程的影响: 以江汉盆地为例[J]. 地质科技情报, 2012, 31(3): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203018.htm

    Ke Y B, Li Y L, Zhang W, et al. Impact of halite precipitation on CO2 injection into saline aquifers: A case study of Jianghan Basin[J]. Geological Science and Technology Information, 2012, 31(3): 109-115(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201203018.htm
    [21] Bacci G, Korre A, Durucan S. Experimental investigation into salt precipitation during CO2 injection in saline aquifers[J]. Energy Procedia, 2011, 4(22): 4450-4456. http://core.ac.uk/download/pdf/82095654.pdf
    [22] Zeidouni M, Pooladi-Darvish M, Keith D. Analytical solution to evaluate salt precipitation during CO2 injection in saline aquifers[J]. International Journal of Greenhouse Gas Control, 2009, 3: 600-611. doi: 10.1016/j.ijggc.2009.04.004
    [23] Muller N, Qi R, Mackie E, et al. CO2 injection impairment due to halite precipitation[J]. Energy Procedia, 2009, 1(1): 3507-3514. doi: 10.1016/j.egypro.2009.02.143
    [24] Bacci G, Korre A, Durucan S. An experimental and numerical investigation into the impact of dissolution/precipitation mechanisms on CO2 injectivity in the wellbore and far field regions[J]. International Journal of Greenhouse Gas Control, 2011, 5: 579-588. doi: 10.1016/j.ijggc.2010.05.007
    [25] Kim M, Sell A, Sinton D. Aquifer on a chip: Understanding pore-scale salt precipitation dynamics during CO2 sequestration[J]. Lab on a Chip, 2013, 13(13): 2508-2518. doi: 10.1039/c3lc00031a
    [26] Meng Q, Jiang X, Li D, et al. Numerical simulations of pressure buildup and salt precipitation during carbon dioxide storage in saline aquifers[J]. Computers & Fluids, 2015, 121: 92-101. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0045793015002820&originContentFamily=serial&_origin=article&_ts=1440906384&md5=0e4bec39e18eb5792fede3b4a8ed25de
    [27] Miri R, van Noort R, Aagaard P, et al. New insights on the physics of salt precipitation during injection of CO2 into saline aquifers[J]. International Journal of Greenhouse Gas Control, 2015, 43: 10-21. doi: 10.1016/j.ijggc.2015.10.004
    [28] Berntsen A, Todorovic J, Raphaug M, et al. Salt clogging during supercritical CO2 injection into a downscaled borehole model[J]. International Journal of Greenhouse Gas Control, 2019, 86: 201-210. doi: 10.1016/j.ijggc.2019.04.009
    [29] Ott H, Kloe K, Bakel M, et al. Core-flood experiment for transport of reactive fluids in rocks[J]. The Review of Scientific instruments, 2012, 83: 84501. doi: 10.1063/1.4746997
    [30] Roels S, Ott H, Zitha P. μ-CT analysis and numerical simulation of drying effects of CO2 injection into brine-saturated porous media[J]. International Journal of Greenhouse Gas Control, 2014, 27: 146-154. doi: 10.1016/j.ijggc.2014.05.010
    [31] Pruess K, Oldenburg C M, Moridis G J. TOUGH2 User's Guide Version 2[R]. Berkeley: Office of Scientific & Technical Information Technical Reports, 1999.
    [32] Pan L, Spycher N, Doughty C, et al. ECO2N V2.0: A TOUGH2 fluid property module for modeling CO2-H2O-NACL systems to elevated temperatures of up to 300℃[J]. Greenhouse Gases: Science and Technology, 2017, 7(2): 313-327. doi: 10.1002/ghg.1617
    [33] Pruess K, Spycher N. ECO2N-A fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers[J]. Energy Conversion and Management, 2007, 48(6): 1761-1767. doi: 10.1016/j.enconman.2007.01.016
    [34] Verma A, Pruess K. Thermohydrologic conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations[J]. Journal of Geophysical Research, 1988, 93(B2): 1159-1173. doi: 10.1029/JB093iB02p01159
    [35] Xu T, Apps J, Pruess K. Numerical simulation to study mineral trapping for CO2 disposal in deep aquifers[J]. Applied Geochemistry, 2004, 19(6): 917-936. doi: 10.1016/j.apgeochem.2003.11.003
    [36] Yang G, Li Y, Atrens A, et al. Numerical investigation into the impact of CO2-water-rock interactions on CO2 injectivity at the Shenhua CCS Demonstration Project, China[J]. Geofluids, 2017, 2017: 1-17. http://www.onacademic.com/detail/journal_1000040469636610_a0c3.html
    [37] 刁玉杰. 神华CCS示范工程场地储层表征与CO2运移规律研究[D]. 北京: 中国矿业大学(北京), 2017.

    Diao Y J. Study on the researvoir characterization and CO2 migration underground in the Shenhua CCS Demonstration Project Site[D]. Beijing: China University of Mining & Technology(Beijing), 2017.
    [38] 李智, 叶加仁, 曹强, 等. 鄂尔多斯盆地杭锦旗独贵加汗区带下石盒子组储层特征及孔隙演化[J]. 地质科技通报, 2021, 40(4): 49-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104005.htm

    Li Z, Ye J R, Cao Q, et al. Reservoir characteristics and pore evolution of the Lower Shihezi Formation in Duguijiahan zone, Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 49-60(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104005.htm
    [39] 赵会涛, 郭英海, 杜小伟, 等. 鄂尔多斯盆地高桥地区本溪组砂岩储层微观孔隙多重分形特征[J]. 地质科技通报, 2020, 39(6): 175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006019.htm

    Zhao H T, Guo Y H, Du X W, et al. Micro-pore multifractal characteristics of Benxi Formation sandstone reservoir in Gaoqiao area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 175-184(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006019.htm
    [40] VanGenuchten M. A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [41] Corey A T. The interrelation between gas and oil relative permeabilities[J]. Producers Monthly, 1954, 19(1): 38-41. http://www.researchgate.net/publication/240318036_The_Interrelation_Between_Gas_and_Oil_Relative_Permeability
    [42] Xie J, Zhang K, Hu L, et al. Field-based simulation of a demonstration site for carbon dioxide sequestration in low-permeability saline aquifers in the Ordos Basin, China[J]. Hydrogeology Journal, 2015, 23(7): 1465-1480. doi: 10.1007/s10040-015-1267-9
    [43] Sokama-Neuyam Y A, Forsetløkken S L, Lien J E, et al. The coupled effect of fines mobilization and salt precipitation on CO2 injectivity[J]. Energies, 2017, 10(8): 1125. doi: 10.3390/en10081125
    [44] Baumann G, Henninges J, Lucia M D. Monitoring of saturation changes and salt precipitation during CO2 injection using pulsed neutron-gamma logging at the Ketzin pilot site[J]. International Journal of Greenhouse Gas Control, 2014, 28: 134-146. doi: 10.1016/j.ijggc.2014.06.023
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  482
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-22
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回