Analysis of mineralogical characteristics of imported iron ore from different countries: Constraints from maceral compositions and elemental analysis
-
摘要:
我国是铁矿石资源进口大国,通过分析不同产地进口铁矿石的矿物学特征,可以为铁矿石原产地分析及固体废物属性鉴定提供参考依据。以11个常见进口国一级铁矿石样品为研究对象,综合运用偏光显微镜、X射线荧光光谱法(XRF)以及黄铁矿、磁铁矿LA-ICP-MS微量元素分析等方法,查明了各国铁矿石的元素组成和矿物组合特征,探究了不同产地铁矿石形成的地质环境。X射线荧光光谱分析表明铁矿石样品主要元素为Fe,O,其次为Si,Ca,Al,Mn,Tb,Ti,Mg,P,S,不同国别铁矿石元素含量存在差异。偏光显微镜光片鉴定表明铁矿石样品不仅矿物类型上存在差异,而且在副矿物种类和含量、结构构造等方面存在差别,这些差异性特征可以作为铁矿石产地判别的依据。磁铁矿微区原位微量元素的成因类型判别结果显示,澳大利亚磁铁矿主要为BIF建造型,而缅甸、老挝为矽卡岩型。采用多种技术表征不同产地铁矿石样品的矿物组成、元素含量、矿相组成、矿物形成环境的差异性,揭示了不同产地铁矿石样品的矿物学特征,对进口铁矿石质量的识别、管控和产地溯源具有重要意义。
Abstract:China is the largest importer of iron ore resources. Analyzing the mineralogical characteristics of imported iron ore samples imported from different countries can provide a reference for identifying the source of iron ore and solid waste attributes. In this paper, iron ore samples imported from 11 countries were used to determine their elemental compositions and mineral assemblages by polarized light microscopy investigation, X-ray fluorescence spectroscopy (XRF) and pyrite/magnetite LA-ICP-MS element analysis. These results are applied to explore the formation environment of iron minerals. XRF analysis results show that the main elements of iron ore samples are Fe and O, followed by Si, Ca, Al, Mn, Tb, Ti, Mg, P, and S. These elements are significant differences in iron ore among different countries. Polarizing microscopy investigation shows that there are great differences not only in mineral types but also in other aspects (e.g., accessory mineral types, accessory mineral content, and structure). These differences can be used as proxies for the identification of iron ore origin. Finally, in situ major and trace elements of magnetite were used to distinguish the genetic types of iron deposits. The magnetite deposits from Burma and Laos are skarn type, while those from Australia are mainly BIF type. In this study, multiple techniques were used to characterize the differences in element content, mineral facies composition and mineral-forming environment of iron ore samples and to comprehensively analyze the mineralogical characteristics of iron ore samples from different countries. These differences are of great significance for the identification, quality control and origin of imported iron ore resources.
-
Key words:
- iron ore /
- mineral phase analysis /
- trace elements /
- LA-ICP-MS /
- genetic type of deposit
-
图 2 不同国别进口铁矿石金属矿物显微矿相图
A.缅甸样品中的磁铁矿、赤铁矿、黄铁矿,反射光下;B.乌克兰样品中的赤铁矿,斜照光下;C.老挝样品中磁铁矿向赤铁矿转化,反射光下;D.加拿大样品中钛铁矿、赤铁矿、磁铁矿,正交偏光下;E.澳大利亚样品中的赤铁矿与褐铁矿,正交偏光下;F.南非样品中的赤铁矿与黄铁矿,反射光下;G.南非样品中赤铁矿与褐铁矿,正交偏光下;H.智利样品中钛铁矿与黄铁矿,反射光下;I.吉尔吉斯斯坦样品中的钛铁矿与黄铁矿,反射光下。Hem.赤铁矿; Mag.磁铁矿; Py.黄铁矿; Ilm.钛铁矿; Lm.铁矿
Figure 2. Microscopic photos showing mineral compositions of imported iron ore from different countries
图 6 不同国别进口铁矿石中磁铁矿微量元素的矿床识别类型[23]
BIF.条带状含铁建造型;IOCG.铁氧化物-铜-金型;Kiruna.基律纳型;Fe-Ti-V.钒钛磁铁矿型
Figure 6. Magnetite trace elements diagram showing ore deposit types of iron ores imported from different countries
表 1 进口铁矿石样品产地及其他信息
Table 1. Imported iron ore sample origin and other information
国别 品名 品牌 入境口岸 巴西 铁矿粉 Sinter Feed High SiliconGuaiba 上海 哈萨克斯坦 球团矿 球团矿 阿拉山口 加拿大 粉矿 Concentrate Fine 上海 缅甸 铁矿石 铁矿石 云南自治 老挝 铁矿 铁矿砂 日照 伊朗 球团矿 球团矿 日照 南非 铁矿粉 精粉Iron Ore (Magnetite) 上海 澳大利亚 铁块矿 纽曼块 上海 智利 粉矿 ATACAMA PFCNN 湛江 吉尔吉斯斯坦 铁矿粉 铁精粉 阿拉山口 乌克兰 铁矿粉 Agglomerate精粉65.0 上海 表 2 不同国别进口铁矿石偏光显微镜金属矿物鉴定结果
Table 2. Results of metal minerals identified by polarizing microscope in iron ore from different imported countries
原产国 主要矿物 其他次要矿物 特异性指标 巴西 赤铁矿 磁铁矿 板状结构和网状结构 哈萨克斯坦 赤铁矿 磁铁矿 含绢云母 加拿大 磁铁矿 赤铁矿 主矿物不单一 缅甸 磁铁矿 黄铁矿、赤铁矿 矿物种类多、矿物结构多 老挝 磁铁矿 赤铁矿 磁铁矿向赤铁矿转化 伊朗 磁铁矿 赤铁矿 赤铁矿向磁铁矿转化 南非 赤铁矿 褐铁矿、黄铁矿 矿物晶体细小 澳大利亚 赤铁矿 磁铁矿 赤铁矿中均含有褐铁矿 智利 钛铁矿 黄铁矿 含大量绿泥石 吉尔吉斯斯坦 钛铁矿 黄铁矿 无明显特征 乌克兰 赤铁矿 钛铁矿 无明显特征 -
[1] 涂昀, 刘志源, 张婕, 等. X射线荧光光谱法测定铁矿石的化学成分[J]. 世界有色金属, 2017(1): 22-24. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201701005.htmTu Y, Liu Z Y, Zhang J, et al. Determination of chemical composition of iron ore by X-rayfluoressence spectrometry[J]. World Nonferrous Metals, 2017(1): 22-24(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201701005.htm [2] 刘曙, 张博, 闵红, 等. X射线荧光光谱结合判别分析识别铁矿石产地及品牌: 应用拓展[J]. 光谱学与光谱分析, 2021, 41(1): 285-291. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202101054.htmLiu S, Zhang B, Min H, et al. X-Ray fluorescence spectroscopy combined with discriminant analysis to identify imported iron ore origin and brand: Application development[J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 285-291(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202101054.htm [3] Zhou S B, Yuan Z X, Cheng Q M, et al. Quantitative analysis of iron and silicon concentrations in iron ore concentrate using portable X-ray fluorescence (XRF)[J]. Applied Spectroscopy, 2020, 74(1): 55-62. doi: 10.1177/0003702819871627 [4] Uduma U A, Ngele S O, Alisi I O, et al. Elemental analysis of Itakpe iron ore by energy dispersive X-ray fluorescence spectrometry[J]. Bayero Journal of Pure and Applied Sciences, 2017, 10(1): 234. doi: 10.4314/bajopas.v10i1.34 [5] 王琴, 胡金盟, 轩小虎. 基于偏光显微镜矿物颗粒种类及含量的鉴定问题简述[J]. 世界有色金属, 2019(11): 260-262. doi: 10.3969/j.issn.1002-5065.2019.11.141Wang Q, Hu J M, Xuan X H. A Brief introduction to the identification of mineral particle types and contents based on polarization microscope[J]. World Nonferrous Metals, 2019(11): 260-262(in Chinese with English abstract). doi: 10.3969/j.issn.1002-5065.2019.11.141 [6] 刘海, 王兵. 中国西北部地区地质矿物在偏光显微镜下的特征[J]. 世界有色金属, 2019(17): 201-202. doi: 10.3969/j.issn.1002-5065.2019.17.120Liu H, Wang B. Characteristics of geological minerals in northwestern China under polarized light microscope[J]. World Nonferrous Metals, 2019(17): 201-202(in Chinese with English abstract). doi: 10.3969/j.issn.1002-5065.2019.17.120 [7] Wasim M, Tariq A, Shafique M A, et al. Characterization and differentiation of iron ores using X-ray diffractometry, k0 instrumental neutron activation analysis and inductively coupledplasma optical emission spectrometry[J]. Journal of Radioanalytical and Nuclear Chemistry: An International Journal Dealing with All Aspects and Applications of Nuclear Chemistry, 2020, 323(1): 179-187. [8] 武素茹, 谷松海, 宋义, 等. 进口铁矿产地鉴别模型的建立[J]. 计算机与应用化学, 2014, 31(12): 1543-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYH201412029.htmWu S R, Gu S H, Song Y, et al. Establishment of origin identification model of important iron ores[J]. Computers and Applied Chemistry, 2014, 31(12): 1543-1546(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYH201412029.htm [9] Machault J, Barbanson L, Augé T, et al. Mineralogical and microtextural parameters in metals ores traceability studies[J]. Ore Geology Reviews, 2014, 63: 307-327. doi: 10.1016/j.oregeorev.2014.05.019 [10] 张乐骏, 周涛发. 矿物原位LA-ICP-MS微量元素分析及其在矿床成因和预测研究中的应用进展[J]. 岩石学报, 2017, 33(11): 3437-3452. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711007.htmZhang L J, Zhou T F. Minerals in-situ LA-ICP-MS trace elements study and the applications in ore deposit genesis and exploration[J]. Acta Petrologica Sinica, 2017, 33(11): 3437-3452(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711007.htm [11] 李杰, 黄宏业, 刘子杰, 等. 向阳坪铀矿床沥青铀矿微区原位LA-ICP-MS U-Pb年龄及稀土元素特征[J]. 地质科技通报, 2021, 40(1): 90-99. doi: 10.19509/j.cnki.dzkq.2021.0011Li J, Huang H Y, Liu Z J, et al. In-situ U-Pb dating of pitchblende and the REE characteristics using LA-ICP-MS in Xiangyangping uranium deposit[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 90-99(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0011 [12] Dare S A S, Barnes S J, Beaudoin G, et al. Trace elements in magnetite as petrogenetic indicators[J]. Mineralium Deposita, 2014, 49(7): 785-796. doi: 10.1007/s00126-014-0529-0 [13] Nadoll P, Mauk J L, Leveille R A, et al. Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States[J]. Mineralium Deposita, 2015, 50(4): 493-515. [14] 黄柯, 朱明田, 张连昌, 等. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201703004.htmHuang K, Zhu M T, Zhang L C, et al. LA -ICP -MS analysis of magnetite and application in genesis of mineral deposit[J]. Advances in Earth Science, 2017, 32(3): 262-275(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201703004.htm [15] Knipping J L, Fiege A, Simon A C, et al. In-situ iron isotope analyses reveal igneous and magmatic-hydrothermal growth of magnetite at the Los Colorados Kiruna-type iron oxide-apatite deposit, Chile[J]. American Mineralogist, 2019, 104(4): 471-484. [16] Sun W A, Yuan F, Jowitt S M, et al. In situ LA-ICP-MS trace element analyses of magnetite: Genetic implications for the Zhonggu Orefield, Ningwu Volcanic Basin, Anhui Province, China[J]. Mineralium Deposita, 2019, 54(8): 1243-1264. [17] Mirzaei R, Ahmadi A, Mirnejad H, et al. Two-tiered magmatic-hydrothermal and skarn origin of magnetite from Gol-Gohar iron ore deposit of SE Iran: In-situ LA-ICP-MS analyses[J]. Ore Geology Reviews, 2018, 102: 639-653. [18] Liu Y N, Fan Y, Zhou T F, et al. Geochemical characteristics of magnetite in Longqiao skarn iron deposit in the Middle-Lower Yangtze Metallogenic Belt, Eastern China[J]. Mineralium Deposita, 2019, 54(8): 1229-1242. [19] 王志华, 张作衡, 蒋宗胜, 等. 西天山智博铁矿床磁铁矿成分特征及其矿床成因意义[J]. 矿床地质, 2012, 31(5): 983-998. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201205004.htmWang Z H, Zhang Z H, Jiang Z S, et al. Magnetite composition of Zhibo iron deposit in Western Tianshan Mountains and its genetic significance[J]. Mineral Deposits, 2012, 31(5): 983-998(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201205004.htm [20] 栾燕, 孙晓辉, 刘民武, 等. 磁铁矿LA-ICP-MS原位微量元素分析方法研究[J]. 地质科技通报, 2021, 40(2): 167-175. doi: 10.19509/j.cnki.dzkq.2021.0215Luan Y, Sun X H, Liu M W, et al. Analysis method for in-situ trace element determination of magnetite by LA-ICP-MS[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 167-175(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0215 [21] 赵岩岩, 谭俊, 刘晓阳, 等. 湖北大冶铜绿山矽卡岩型铜铁(金)矿床包裹体特征及其地质意义[J]. 地质科技通报, 2020, 39(6): 64-74. doi: 10.19509/j.cnki.dzkq.2020.0606Zhao Y Y, Tan J, Liu X Y, et al. Inclusion features and geological significance of the Tonglüshan skarn-type copper-iron (gold) deposit in Daye, Hubei[J]. Bulletin of Geological Science and Technology, 2020, 39 (6): 64-74(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0606 [22] 赵宏军, 陈秀法, 何学洲, 等. 全球铁矿床主要成因类型特征与重要分布区带研究[J]. 中国地质, 2018, 45(5): 890-919. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201805003.htmZhao H J, Chen X F, He X Z, et al. A study of genetic type characteristics and important distribution zones of global iron deposits[J]. Geology in China, 2018, 45(5): 890-919(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201805003.htm [23] Dupuis C, Beaudoin G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 2011, 46(4): 319-335. -