留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

测井数据小波变换在川中寒武系洗象池群层序地层划分中的应用

曹庆超 白壮壮 李浩武 张宁宁

曹庆超, 白壮壮, 李浩武, 张宁宁. 测井数据小波变换在川中寒武系洗象池群层序地层划分中的应用[J]. 地质科技通报, 2021, 40(4): 242-251. doi: 10.19509/j.cnki.dzkq.2021.0418
引用本文: 曹庆超, 白壮壮, 李浩武, 张宁宁. 测井数据小波变换在川中寒武系洗象池群层序地层划分中的应用[J]. 地质科技通报, 2021, 40(4): 242-251. doi: 10.19509/j.cnki.dzkq.2021.0418
Cao Qingchao, Bai Zhuangzhuang, Li Haowu, Zhang Ningning. Application of wavelet transformation of logging data in sequence stratigraphic division of Cambrian Xixiangchi Group in Central Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 242-251. doi: 10.19509/j.cnki.dzkq.2021.0418
Citation: Cao Qingchao, Bai Zhuangzhuang, Li Haowu, Zhang Ningning. Application of wavelet transformation of logging data in sequence stratigraphic division of Cambrian Xixiangchi Group in Central Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 242-251. doi: 10.19509/j.cnki.dzkq.2021.0418

测井数据小波变换在川中寒武系洗象池群层序地层划分中的应用

doi: 10.19509/j.cnki.dzkq.2021.0418
基金项目: 

国家油气重大专项海外油气投资环境评估与勘探资产评价 2016ZX05029-003

详细信息
    作者简介:

    曹庆超(1994-), 男, 现正攻读油气资源工程专业硕士学位, 主要从事海外油气勘探资产评价工作。E-mail: caoqingchao@petrochina.com.cn

    通讯作者:

    白壮壮(1996-), 男, 现正攻读矿产普查与勘探专业硕士学位, 主要从事沉积储层地质研究工作。E-mail: baizz96@163.com

  • 中图分类号: P618.13

Application of wavelet transformation of logging data in sequence stratigraphic division of Cambrian Xixiangchi Group in Central Sichuan Basin

  • 摘要: 川中地区寒武系洗象池群由于缺乏生物化石,岩性、电性变化小,利用传统的岩心和测井等资料很难精确地划分层序。自然伽马能谱测井Th、U、K曲线的突变点能指示层序界面和最大海泛面,其Th/U和Th/K曲线不仅能够反映沉积时的氧化还原环境,还可以反映沉积水体的变化,将沉积旋回记录下来。再通过小波变换技术进行多尺度分解,得到不同级数的小波曲线。以GT2井为主要研究对象,对Th/U曲线进行多波基分解,对比发现Dmeyer小波为最优选。结合碳同位素正漂移事件,对小波变换后得到的小波曲线Th/U-d8分析,总结出2种层序划分地质模型,并将洗象池群划分为4个三级层序、8个体系域,每个三级层序由海侵体系域和高位体系域构成。同时选取了分辨率更高的小波曲线Th/U-d7和Th/U-d6曲线对四级和五级层序进行精细划分,共划分11个四级层序和25个五级层序,分别以三级层序和四级层序刻画了沉积期的相对海平面变化。该研究有助于对川中洗象池群进行精细的层序划分,推进其沉积演化与储层发育特征研究。

     

  • 图 1  研究区位置

    Figure 1.  Location of the study area

    图 2  GT2井自然伽马能谱测井曲线及碳同位素特征

    Figure 2.  Natural Gamma-ray spectrum logging curve and carbon isotope characteristics of Well GT2

    图 3  GT2井自然伽马能谱测井曲线及不同小波变换结果(岩性同图 2)

    Figure 3.  Natural Gamma-ray spectrum logging curve of Well GT2 and the results of different wavelet transformation

    图 4  GT2井测井曲线平均滤波前后对比图

    Th.原始曲线;Th-SM.滤波曲线

    Figure 4.  Comparison of logging curves of Well GT2 before and after average filtering

    图 5  川中地区洗象池群小波变换典型地质模型(岩性同图 2)

    Figure 5.  Typical geological model of wavelet transformation of Xixiangchi Group in Central Sichuan

    图 6  利用小波变换结果划分层序地层(GT2井)(岩性同图 2)

    Figure 6.  Using the results of wavelet transformation to divide sequence stratigraphy (Well GT2)

    图 7  小波变换划分高频旋回及相对海平面变化(GT2井)(岩性同图 2)

    Figure 7.  High frequency cycles divided by wavelet transformation and relative sea level changes (Well GT2)

    表  1  GT2井洗象池群各体系域自然伽马能谱测井数据统计

    Table  1.   Statistics of natural Gamma-ray spectrum logging data of each system domain of Well GT2 Xixiangchi Group

    层序 体系域 Th/U Th/K w(K)/
    %
    w(U)/
    10-6
    w(Th)/
    10-6
    SQ4 HST 2.281 1.265 2.419 1.571 1.864
    TST 2.744 1.592 0.794 1.546 2.096
    SQ3 HST 2.545 1.272 0.793 1.546 1.869
    TST 2.611 1.440 0.820 1.478 2.121
    SQ2 HST 2.535 1.333 0.720 1.409 1.759
    TST 2.450 1.427 0.851 1.448 1.994
    SQ1 HST 2.480 1.306 1.000 1.679 2.126
    TST 2.163 1.713 1.392 1.687 2.704
    下载: 导出CSV
  • [1] Vail P R, Mitchum Jr R M, Thompson S, et al. Seismic stratigraphy and global changes of sea level, part four: Global cycles of relative changes of sea level[C]//Anon. American Association of Petroleum Geologists Memoir 26, III 1977.
    [2] 朱筱敏. 层序地层学原理及应用[M]. 北京: 石油工业出版社, 1998.

    Zhu X M. Principle and application of sequence stratigraphy[M]. Beijing: Petroleum Industry Press, 1998(in Chinese).
    [3] 闫建平, 蔡进功, 赵铭海, 等. 测井信息用于层序地层单元划分及对比研究综述[J]. 地层学杂志, 2009, 33(4): 441-450. doi: 10.3969/j.issn.0253-4959.2009.04.013

    Yan J P, Cai J G, Zhao M H, et al. A review of the application of logging information to the division and correlation of sequence stratigraphic units[J]. Journal of Stratigraphy, 2009, 33(4): 441-450(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4959.2009.04.013
    [4] 李小梅, 俞娟丽. 时频分析技术在层序旋回划分中的应用[J]. 石油与天然气地质, 2008, 29(6): 793-796. doi: 10.3321/j.issn:0253-9985.2008.06.013

    Li X M, Yu J L. Application of time-frequency analysis technique in sequence cycle division[J]. Petroleum and Natural Gas Geology, 2008, 29(6): 793-796(in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2008.06.013
    [5] 陈茂山. 测井资料的两种深度域频谱分析方法及在层序地层学研究中的应用[J]. 石油地球物理勘探, 1999, 34(1): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ199901009.htm

    Chen M S. Two novel depth-domain frequency spectrum analysis methods for logging data and their application to sequence stratigraphy research[J]. Petroleum Geophysical Exploration, 1999, 34(1): 57-64(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ199901009.htm
    [6] 高达, 林畅松, 胡明毅, 等. 利用自然伽马能谱测井识别碳酸盐岩高频层序: 以塔里木盆地塔中地区T1井良里塔格组为例[J]. 沉积学报, 2016, 34(4): 707-715. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201604011.htm

    Gao D, Lin C S, Hu M Y, et al. Using spectral gamma-ray log to recognize high-frequency sequences in carbonate strata: A case study from the Lianglitag Formation from Well T1 in Tazhong area, Tarim Basin[J]. Acta Sedimentologica Sinica, 2016, 34(4): 707-715(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201604011.htm
    [7] 李新虎. 小波分析在测井层序地层划分中的应用: 以二连盆地白音查干凹陷达30井腾格尔组为例[J]. 天然气地球科学, 2008, 19(3): 385-389. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200803017.htm

    Li X H. Application of wavelet analysis to well logging sequence stratigraphic division: Taking Tengger Formation, Well Da 30 in Baiyinchagan Sag, Erlian Basin as an example[J]. Natural Gas Geoscience, 2008, 19(3): 385-389(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200803017.htm
    [8] 朱剑兵, 纪友亮, 赵培坤, 等. 小波变换在层序地层单元自动划分中的应用[J]. 石油勘探与开发, 2005, 32(1): 84-86. doi: 10.3321/j.issn:1000-0747.2005.01.022

    Zhu J B, Ji Y L, Zhao P K, et al. Application of wavelet transform in auto-identify units of stratigraphy sequence[J]. Petroleum Exploration and Development, 2005, 32(1): 84-86(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2005.01.022
    [9] 王艳忠, 操应长, 远光辉. 小波分析在深水砂砾岩和泥页岩地层层序划分中的应用[J]. 天然气地球科学, 2012, 23(2): 251-258. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201202009.htm

    Wang Y Z, Cao Y C, Yuan G H. Application of wavelet analysis to stratigraphic sequence division of deep water glutenite and shale[J]. Natural Gas Geoscience, 2012, 23(2): 251-258(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201202009.htm
    [10] 付文钊, 余继峰, 杨锋杰, 等. 小波变换与Hilbert-Huang变换应用于层序划分的比较[J]. 煤炭学报, 2013, 38(增刊2): 434-441. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2013S2030.htm

    Fu W Z, Yu J F, Yang F J, et al. Comparison of the application of wavelet transform and Hilbert-Huang transform to sequence division[J]. Journal of Coal, 2013, 38(S2): 434-441(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2013S2030.htm
    [11] Ehrenberg S N, Svånå T A. Use of spectral gamma-ray signature to interpret stratigraphic surfaces in carbonate strata: An example from the Finnmark carbonate platform(Carboniferous-Permian), Barents Sea[J]. AAPG Bulletin, 2001, 85(2): 295-308.
    [12] 冯伟明, 谢渊, 刘建清, 等. 海相碳酸盐岩自然伽马能谱测井资料的沉积学意义: 以川东南L1井下寒武统清虚洞组为例[J]. 海洋地质与第四纪地质, 2016, 36(5): 165-172. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201605022.htm

    Feng W M, Xie Y, Liu J Q, et al. Sedimentological significance of natural gamma-ray spectrum logging data of marine carbonate rocks: Taking the Cambrian Qingxudong Formation in Well L1 in southeastern Sichuan as an example[J]. Marine Geology and Quaternary Geology, 2016, 36(5): 165-172(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201605022.htm
    [13] 李峰峰, 郭睿, 余义常. 层序地层划分方法进展及展望[J]. 地质科技情报, 2019, 38(4): 215-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904022.htm

    Li F F, Guo R, Yu Y C. Progress and prospect of sequence stratigraphic division methods[J]. Geological Science and Technology Information, 2019, 38(4): 215-224(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904022.htm
    [14] 梅冥相, 刘智荣, 孟晓庆, 等. 上扬子区中、上寒武统的层序地层划分和层序地层格架的建立[J]. 沉积学报, 2006, 24(5): 617-626. doi: 10.3969/j.issn.1000-0550.2006.05.001

    Mei M X, Liu Z R, Meng X Q, et al. Sequence stratigraphic division and establishment of sequence stratigraphic framework of Middle and Upper Cambrian in Upper Yangtze area[J]. Acta Sedimentologica Sinica, 2006, 24(5): 617-626(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2006.05.001
    [15] 张满郎, 谢增业, 李熙喆, 等. 四川盆地寒武纪岩相古地理特征[J]. 沉积学报, 2010, 28(1): 128-139. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201001016.htm

    Zhang M L, Xie Z Y, Li X Z, et al. Characteristics of Cambrian lithofacies and palaeogeography in Sichuan Basin[J]. Acta Sedimentologica Sinica, 2010, 28(1): 128-139(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201001016.htm
    [16] 杨威, 谢武仁, 魏国齐, 等. 四川盆地寒武纪-奥陶纪层序岩相古地理、有利储层展布与勘探区带[J]. 石油学报, 2012, 33(增刊2): 21-34. doi: 10.7623/syxb2012S2003

    Yang W, Xie W R, Wei G Q, et al. Cambrian-Ordovician sequence lithofacies palaeogeography, favorable reservoir distribution and exploration zone in Sichuan Basin[J]. Journal of Petroleum, 2012, 33(S2): 21-34(in Chinese with English abstract). doi: 10.7623/syxb2012S2003
    [17] 袁立, 姚君波, 李国蓉, 等. 四川盆地中-上寒武统层序地层划分与沉积模式[J]. 海相油气地质, 2013, 18(3): 19-28. doi: 10.3969/j.issn.1672-9854.2013.03.003

    Yuan L, Yao J B, Li G R, et al. Sequence stratigraphic division and sedimentary model of Middle-Upper Cambrian in Sichuan Basin[J]. Marine Oil and Gas Geology, 2013, 18(3): 19-28(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2013.03.003
    [18] 贾鹏, 李明, 卢远征, 等. 四川盆地寒武系洗象池群层序地层划分及层序地层格架的建立[J]. 地质科技情报, 2017, 36(2): 119-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702015.htm

    Jia P, Li M, Lu Y Z, et al. Sequence stratigraphic division and establishment of sequence stratigraphic framework of Cambrian Xixiangchi Group in Sichuan Basin[J]. Geological Science and Technology Information, 2017, 36(2): 119-127(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702015.htm
    [19] 李文正, 张建勇, 郝毅, 等. 川东南地区洗象池组碳氧同位素特征、古海洋环境及其与储集层的关系[J]. 地质学报, 2019, 93(2): 487-500. doi: 10.3969/j.issn.0001-5717.2019.02.015

    Li W Z, Zhang J Y, Hao Y, et al. Carbon and oxygen isotope characteristics of Xixiangchi Formation, paleo-marine environment and its relationship with reservoirs in southeastern Sichuan[J]. Acta Geologica Sinica, 2019, 93(2): 487-500(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.02.015
    [20] Saltzman M R, Ripperdan R L, Brasier M D, et al. A global carbon isotope excursion(SPICE) during the Late Cambrian: Relation to trilobite extinctions, organic-matter burial and sea level[J]. Palaeogeography, Palaeoclimatology, Palaeoeeology, 2000, 162(3/4): 211-223. http://www.sciencedirect.com/science/article/pii/S0031018200001280
    [21] 魏国齐, 杨威, 杜金虎, 等. 四川盆地高石梯-磨溪古隆起构造特征及对特大型气田形成的控制作用[J]. 石油勘探与开发, 2015, 42(3): 257-265. doi: 10.11698/PED.2015.03.01

    Wei G Q, Yang W, Du J H, et al. Structural characteristics of Gaoshiti-Moxi paleo-uplift in Sichuan Basin and its controlling effect on the formation of super-large gas fields[J]. Petroleum Exploration and Development, 2015, 42(3): 257-265(in Chinese with English abstract). doi: 10.11698/PED.2015.03.01
    [22] 林怡, 钟波, 陈聪, 等. 川中地区古隆起寒武系洗象池组气藏成藏控制因素[J]. 成都理工大学学报: 自然科学版, 2020, 47(2): 150-158. doi: 10.3969/j.issn.1671-9727.2020.02.03

    Lin Y, Zhong B, Chen C, et al. Controlling factors of gas reservoir formation in Cambrian Xixiangchi Formation of Cambrian paleo-uplift in central Sichuan[J]. Journal of Chengdu University of Technology: Natural Science Edition, 2020, 47(2): 150-158(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2020.02.03
    [23] Van Wagoner J C, Mitchum H M, Campion K M, et al. Silici-clastic sequence stratigraphy in well logs, cores and outcrops: Concepts for high-resolution correlation of time and facies[C]//AAPG Methonds in Exploration Series, 1990.
    [24] 伊海生. 测井曲线旋回分析在碳酸盐岩层序地层研究中的应用[J]. 古地理学报, 2011, 13(4): 456-466. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201104012.htm

    Yi H S. Application of logging curve cycle analysis to the study of carbonate sequence stratigraphy[J]. Journal of Palaeogeography, 2011, 13(4): 456-466(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201104012.htm
    [25] 阳孝法, 林畅松, 杨海军, 等. 自然伽马能谱在塔中地区晚奥陶世碳酸盐岩层序地层分析中的应用[J]. 石油地球物理勘探, 2010, 45(3): 384-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201003011.htm

    Yang X F, Lin C S, Yang H J, et al. Application of natural gamma-ray spectroscopy to sequence stratigraphic analysis of Late Ordovician carbonate rocks in Tazhong area[J]. Petroleum Geophysical Exploration, 2010, 45(3): 384-391(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201003011.htm
    [26] 王卫红, 姜在兴, 操应长, 等. 测井曲线识别层序边界的方法探讨[J]. 西南石油学院学报, 2003, 25(3): 1-4. doi: 10.3863/j.issn.1674-5086.2003.03.001

    Wang W H, Jiang Z X, Cao Y C, et al. Discussion of the methods of using logging curves to recognize sequence boundaries[J]. Journal of Southwest Petroleum Institute, 2003, 25(3): 1-4(in Chinese with English abstract). doi: 10.3863/j.issn.1674-5086.2003.03.001
    [27] 余杰, 陈钢花. 测井资料高分辨率层序地层分析[J]. 测井技术, 2007, 31(1): 21-24. doi: 10.3969/j.issn.1004-1338.2007.01.006

    Yu J, Chen G H. High-resolution sequence stratigraphic analysis of logging data[J]. Logging Technology, 2007, 31(1): 21-24(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1338.2007.01.006
    [28] 王学军, 王志欣, 刘显阳, 等. 利用铀的测井响应恢复鄂尔多斯盆地古水深[J]. 天然气工业, 2008, 28(7): 46-48. doi: 10.3787/j.issn.1000-0976.2008.07.013

    Wang X J, Wang Z X, Liu X Y, et al. Restoring palaeo-depth of the Ordos Basin by using uranium response from GR logging[J]. Natural Gas Industry, 2008, 28(7): 46-48(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2008.07.013
    [29] 丁次乾. 矿物地球物理[M]. 北京: 石油工业出版社, 1994.

    Ding C Q. Mineral geophysics[M]. Beijing: Petroleum Industry Press, 1994(in Chinese).
    [30] Bábek O, Pǐikryl T, Hladil J. Progressive drowning of carbonate platform in the Moravo-Silesian Basin(Czech Republic) before the Frasnian/Famennian event: Facies, compositional variations and gammaray spectrometry[J]. Facies, 2007, 53(2), 293-316. doi: 10.1007/s10347-006-0095-8
    [31] Bábek O, Kalvoda J, Cossey P, et al. Facies and petrophysical signature of the Tournaisian/Viséan(Lower Carboniferous) sea-level cycle in carbonate ramp to basinal settings of the Wales-Brabant massif, British Isles[J]. Sedimentary Geology, 2013, 284/285: 197-213. doi: 10.1016/j.sedgeo.2012.12.008
    [32] 郑兴平, 周进高, 吴兴宁. 碳酸盐岩高频层序定量分析技术及其应用[J]. 中国石油勘探, 2004, 9(5): 26-30, 2. doi: 10.3969/j.issn.1672-7703.2004.05.005

    Zheng X P, Zhou J G, Wu X N. Quantitative analysis technique of high frequency sequence of carbonate rocks and its application[J]. China Petroleum Exploration, 2004, 9(5): 26-30, 2(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2004.05.005
    [33] 赵宗举, 陈轩, 潘懋, 等. 塔里木盆地塔中-巴楚地区上奥陶统良里塔格组米兰科维奇旋回性沉积记录研究[J]. 地质学报, 2010, 84(4): 518-536. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004008.htm

    Zhao Z J, Chen X, Pan M, et al. Study on Milankovich cyclic sedimentary records of Lianglitag Formation of Upper Ordovician in Tazhong-Bachu area of Tarim Basin[J]. Acta Geologica Sinica, 2010, 84(4): 518-536(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004008.htm
    [34] 乔大伟, 王红亮. 基于粒度小波变换分析的四川盐源盆地沉积特征及其对盆地形成演化的指示意义[J]. 沉积学报, 2019, 37(4): 713-722. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201904005.htm

    Qiao D W, Wang H L. Sedimentary characteristics of Sichuan Yanyuan Basin based on grain size wavelet transform analysis and its indicative significance for basin formation and evolution[J]. Acta Sedimentologica Sinica, 2019, 37(4): 713-722(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201904005.htm
    [35] 赵伟, 姜在兴, 邱隆伟, 等. 小波分析划分层序单元的地质学理论基础、方法与应用[J]. 石油与天然气地质, 2010, 31(4): 436-441. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201004011.htm

    Zhao W, Jiang Z X, Qiu L W, et al. Geological theoretical basis, method and application of wavelet analysis for dividing sequence units[J]. Petroleum and Gas Geology, 2010, 31(4): 436-441(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201004011.htm
    [36] 李晨, 樊太亮, 谢伟伟. 应用小波变换结合Fischer图解识别长期基准面旋回: 以中国东部某油田X油层为例[J]. 地球物理学进展, 2016, 31(5): 2116-2123. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201605031.htm

    Li C, Fan T L, Xie W W. Using wavelet transform combined with Fischer diagram to identify long-term base level cycle: Taking the X reservoir of an oil field in eastern China as an example[J]. Advances in Geophysics, 2016, 31(5): 2116-2123(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201605031.htm
    [37] 辛福东, 许浩, 汤达祯, 等. 基于小波变换的黔西北地区龙潭组煤系地层层序划分[J]. 油气地质与采收率, 2018, 25(1): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201801008.htm

    Xin F D, Xu H, Tang D Z, et al. Coal measures stratigraphic sequence division of Longtan Formation in northwest Guizhou based on wavelet transform[J]. Oil and Gas Geology and Oil recovery, 2018, 25(1): 49-55(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201801008.htm
    [38] 左景勋, 彭善池, 朱学剑. 扬子地台寒武系碳酸盐岩的碳同位素组成及地质意义[J]. 地球化学, 2008, 37(2): 118-128. doi: 10.3321/j.issn:0379-1726.2008.02.003

    Zuo J X, Peng S C, Zhu X J. Carbon isotope composition of Cambrian carbonate rocks in Yangtze Platform, South China and its geological implications[J]. Geochimica, 2008, 37(2): 118-128. (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2008.02.003
    [39] 樊茹, 邓胜徽, 张学磊. 寒武系碳同位素漂移事件的全球对比性分析[J]. 中国科学: 地球科学, 2011, 41(12): 1829-1839. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201112012.htm

    Fan R, Deng S H, Zhang X L. Global comparative analysis of Cambrian carbon isotope drift events[J]. Chinese Science: Geoscience, 2011, 41(12): 1829-1839(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201112012.htm
    [40] Wu H C, Zhang S H, Hinnov L A, et al. Cyclostratigraphy and orbital tuning of the terrestrial Upper Santonian-Lower Danian in Songliao Basin, northeastern China[J]. Earth and Planetary Science Letters, 2014, 407: 82-95. doi: 10.1016/j.epsl.2014.09.038
    [41] 伊海生. 沉积旋回叠置形式的波形分析及旋回层序划分方法[J]. 沉积学报, 2015, 33(5): 855-864. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201505002.htm

    Yi H S. Waveform analysis of sedimentary cycle superposition and cycle sequence division method[J]. Acta Sedimentologica Sinica, 2015, 33(5): 855-864(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201505002.htm
    [42] 王贵文, 徐敬领, 杨宁, 等. 小波分频分析法在沉积层序划分及等时对比中的应用[J]. 高校地质学报, 2013, 19(1): 70-77. doi: 10.3969/j.issn.1006-7493.2013.01.011

    Wang G W, Xu J L, Yang N, et al. Application of wavelet frequency division analysis in sedimentary sequence division and isochronal correlation[J]. Journal of Geology of Colleges and Universities, 2013, 19(1): 70-77(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2013.01.011
    [43] Li W, Fan R, Jia P, et al. Sequence stratigraphy and lithofacies paleogeography of the Middle-Upper Cambrian Xixiangchi Group in the Sichuan Basin and its adjacent area, SW China[J]. Petroleum Exploration and Development, 2019, 46(2): 226-240.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  746
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09

目录

    /

    返回文章
    返回