留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铼金属矿床类型、元素赋存形式和富集机制

周成胶 张刚阳 张丁川

周成胶, 张刚阳, 张丁川. 铼金属矿床类型、元素赋存形式和富集机制[J]. 地质科技通报, 2021, 40(4): 115-130. doi: 10.19509/j.cnki.dzkq.2021.0431
引用本文: 周成胶, 张刚阳, 张丁川. 铼金属矿床类型、元素赋存形式和富集机制[J]. 地质科技通报, 2021, 40(4): 115-130. doi: 10.19509/j.cnki.dzkq.2021.0431
Zhou Chengjiao, Zhang Gangyang, Zhang Dingchuan. Types, element occurrence forms and enrichment mechanisms of rhenium metal deposits[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 115-130. doi: 10.19509/j.cnki.dzkq.2021.0431
Citation: Zhou Chengjiao, Zhang Gangyang, Zhang Dingchuan. Types, element occurrence forms and enrichment mechanisms of rhenium metal deposits[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 115-130. doi: 10.19509/j.cnki.dzkq.2021.0431

铼金属矿床类型、元素赋存形式和富集机制

doi: 10.19509/j.cnki.dzkq.2021.0431
基金项目: 

国家重点研发计划项目 2017YFC0601505

国家自然科学基金项目 41302066

西藏华钰矿业股份有限公司博士后基金 80303-SHX070

成都理工大学中青年骨干教师培养计划 KYGG201402

详细信息
    作者简介:

    周成胶(1996-), 男, 现正攻读地质学(矿物学、岩石学、矿床学方向)硕士学位, 主要从事矿床学和矿产勘查研究工作。E-mail: 1525369837@qq.com

    通讯作者:

    张刚阳(1982-), 男, 讲师, 主要从事矿床学和矿产勘查的教学和科研工作。E-mail: zhanggangyang@163.com

  • 中图分类号: P618.87

Types, element occurrence forms and enrichment mechanisms of rhenium metal deposits

  • 摘要: 铼是一种战略性的稀散金属矿产,很少形成独立的矿床,多数以伴生元素的形式产出于斑岩型岩浆热液系统。研究表明,富铼矿床主要分布于活动大洋或大陆板块边缘,成因上主要与板块俯冲或碰撞作用紧密联系。富铼矿床成矿时代较新,主要为喜马拉雅期和燕山期。已报道的铼独立矿物约11种,主要包括自然铼、硫铼矿、铜铼矿、钌铼矿、氧化铼等,其中以硫铼矿为主。大多数的铼主要以类质同像的形式赋存于辉钼矿中,其次为黄铜矿、黄铁矿、黑钨矿等。富铼辉钼矿通常形成于中低温热液体系,辉钼矿中铼常显示不均匀性和多阶段性富集特征,最普遍的置换机制为Re4+↔Mo4+。自然界中,由于铼独特的化学行为,铼可以以气相、络合物或离子的形式迁移。在不同的物理化学(如温度、pH、氧逸度、硫逸度等)条件下,相对低温、低pH、还原环境更有利于铼的富集沉淀。为了进一步完善铼金属成矿理论,需着重加强铼的成矿物质来源、赋存状态以及铼富集机制的研究。

     

  • 图 1  世界主要产铼矿产地分布图(底图据文献[11-12])

    Figure 1.  Distribution of the world′s major rhenium-producing minerals

    图 2  全球铼资源储量占比图

    Figure 2.  Proportion of global rhenium reserves

    图 3  铼平均含量与钼平均品位(a)、铼金属量与钼金属量(b)关系图解(数据来源于文献中辉钼矿铼平均含量数据统计,见表 1)

    Figure 3.  Relationship between the average content of rhenium and molybdenum (a), and rhenium metal content and molybdenum metal content (b)

    图 4  斑岩型矿床铼平均含量与钼平均品位关系图解(数据来源于文献中辉钼矿铼平均含量数据统计,见表 1)

    Figure 4.  Relationship between average rhenium content and average molybdenum grade in porphyry deposits

    图 5  全球范围内富铼矿床辉钼矿平均铼含量和成矿年龄关系(数据来源于文献中辉钼矿铼平均含量数据统计,见表 1)

    Figure 5.  Average rhenium content of molybdenite and metallogenic age of rhenium-rich deposits in the world

    表  1  世界典型富铼矿床地质特征

    Table  1.   Geological characteristics of typical rhenium-bearing deposits in the world

    矿床 国家 类型 矿种 年龄/Ma 钼平均品位/% 辉钼矿铼最小值 辉钼矿铼最大值 铼平均含量 总矿石量/Mt 钼金属量/万t 铼平均品位/(g·t-1) 铼金属量/t
    10-6
    El Teniente 智利 斑岩型 Cu-Mo 5.4 0.019 25 1 154 420 20 731 393.9 0.133 2 757
    El Salvador 智利 斑岩型 Cu 42 0.022 585 3 836 84.4 0.215 825
    Chuquicamata 智利 斑岩型 Cu-Mo 33 0.04 93 262 265 21 277 851.1 0.177 3 766
    Los Bronces 智利 斑岩型 Cu-Mo 4.7 0.02 104 898 265 16 816 336 0.088 1 480
    Escondida 智利 斑岩型 Cu-Mo-Au 37 0.006 95 1 805 886 11 158 70.1 0.092 1 027
    Los Pelambres 智利 斑岩型 Cu-Mo 9.5 0.015 450 820 600 7 458 111.9 0.150 1 119
    Cerro Verde 秘鲁 斑岩型 Cu-Mo 62 0.01 3 060 3 497 3 280 2 528 25.3 0.116 293
    Toquepala 秘鲁 斑岩型 Cu-Mo 57 0.04 387 1 496 600 2 320 92.8 0.400 928
    aridad 墨西哥 斑岩型 Cu 53.7 0.025 570 1 800 44.5 0.235 423
    Bagdad 美国 斑岩型 Cu-Mo 71.8 0.01 330 642 460 1 600 16.0 0.077 123
    Bingham 美国 斑岩型 Cu-Mo 37 0.044 130 2 000 360 3 230 171.2 0.221 714
    Santa Rita 美国 斑岩型 Cu 55.5 0.008 700 1200 800 3 030 24.2 0.107 324
    Castle Dome 美国 斑岩型 Cu-Mo-Au 59 0.005 5 1 200 1 750 1 550 1 438 7.90 0.160 230
    Copper Creek 美国 斑岩型 Cu-Mo 58 0.004 6 534 2 107 1 165 75 0.35 0.093 7
    Ely 美国 斑岩型 Cu-Mo 110 0.01 1 250 2 840 2 020 754 7.54 0.267 201
    Morenci 美国 斑岩型 Cu-Mo 56 0.095 100 4 100 1 180 6 470 61.5 0.072 466
    San Manuel 美国 斑岩型 Cu-Mo 68 0.011 700 1 200 950 1 390 15.3 0.165 229
    Climax 美国 斑岩型 Mo 0.2 10 80 13 800 160.0 0.043 35
    Quartz Hill 美国 斑岩型 Mo 0.077 149 1 600 121.92 0.189 302
    Butte 美国 斑岩型 Cu-Mo 0.028 240 5 220 146.2 0.112 585
    Pebble 美国 斑岩型 Cu 89.5 0.024 329 2 070 1 100 5 940 144.3 0.446 2 649
    Kitsault 加拿大 斑岩型 Mo 0.115 36 129 71 104 11.96 0.136 14
    Red Bird 加拿大 斑岩型 Mo 0.065 6 43 25 75 4.89 0.027 2
    德兴 中国江西 斑岩型 Cu 171 0.016 172.3 591.4 358 1825 27.2 0.057 105
    塔前 中国江西 矽卡岩型 W-Mo 162 19.17 87.7 43.7 1.59 1
    金溪熊家山 中国江西 斑岩型 Mo 155 171.3 614.5 450
    铜坑嶂 中国江西 斑岩型 Mo 1 347 0.13 1 125 1 338 1 256 1 0.13 1 2
    铜绿山 中国湖北 矽卡岩型 Cu-Au 137 261.4 665.4 385.7 0.68 3
    鸡冠嘴 中国湖北 矽卡岩型 Cu-Au 138 425.7 1 152 734.9
    Merlin 澳大利亚 石英脉型 Mo-Re 1528 1.5 496.6 1 107.3 836 6.4 9.6 26 166.4
    Kirki(Pagoni Rachi) 希腊 斑岩型 Cu-Mo-Au 4 500 42 100 19 800
    Maronia 希腊 斑岩型 Cu-Mo 29 900 28 800 7 260
    Melitena 希腊 斑岩型 Cu-Mo 2 100 17 400 7 850
    Borly 哈萨克斯坦 斑岩型 Cu 329 0.011 250 5 500 3 160 94 1.04 0.585 55
    Kounrad 哈萨克斯坦 斑岩型 Cu 330 0.011 620 4 050 1 540 637 7.01 0.283 180
    Aktogai 哈萨克斯坦 斑岩型 Cu-Mo 333 0.01 50 2 700 850 2 636 26.4 0.142 374
    Kal′makyr 乌兹别克斯坦 斑岩型 Cu-Mo 290 0.006 700 2 000 1 500 2 000 12.0 0.150 300
    Dastakert 亚美尼亚 斑岩型 Cu 22 0.048 130 300 220 36 1.70 0.167 6
    Kadjaran 亚美尼亚 斑岩型 Cu 22 0.055 33 2 620 280 1 700 93.5 0.257 437
    Elatsite 保加利亚 斑岩型 Cu-Mo 92 0.01 273 2 740 1 250 350 3.5 0.209 73
    Maidanpek 塞尔维亚 斑岩型 Cu-Mo-Au 84 0.005 2 320 3 550 2 770 1 000 5.00 0.231 231
    Muratdere 土耳其 斑岩型 Cu-Mo-Au 52 0.013 134 4 001 904 51 0.64 0.345 17.59
    Sar Cheshmeh 伊朗 斑岩型 Cu-Mo 12.5 0.03 10.85 631 290 1 200 36.0 0.299 359
    雄村 中国西藏 斑岩型 Cu-Mo-Au 166 1 615 12 182 4 146
    努日 中国西藏 矽卡岩型 Cu-Mo-W 24.1 0.073 285 605.5 417 134.6 2.86 0.304 41
    程巴 中国西藏 矽卡岩型 Cu-Mo 58.5 84.6 461.3 252 899.1
    甲玛 中国西藏 斑岩-
    矽卡岩型
    Cu-Mo-
    Pb-Zn
    14.3 61.66 2 232 185.5 60.0 111
    厅宫 中国西藏 斑岩型 Cu-Mo 16 225.7 922.7 486 1.05 5
    拉抗俄 中国西藏 斑岩型 Cu 13 343.6 837.5 538
    鸡公村 中国西藏 石英脉型 Mo 22.5 0.13 1410 1 691 1 525 48.8 6.34 3.47 166.3
    驱龙 中国西藏 斑岩型 Cu-Mo 16 0.032 306 1 218.2 616 1 517 45.7 0.197 299
    普朗 中国云南 斑岩型 Cu-Mo-Au 213 0.004 239.8 379.3 318.5 271.93 4.72 0.013 3
    马厂箐 中国云南 斑岩型 Cu-Mo-Au 34.6 0.093 34.1 63.9 49.1 58.9 5.48 0.051 3
    东戈壁 中国新疆 斑岩型 Mo 211.7 0.113 6.54 84.2 35.4 350.24 39.6 0.04 14
    博罗科努 中国新疆 矽卡岩型 Cu-Mo 288.1 54.3 77.8 64.4
    希勒库都克 中国新疆 斑岩型 Cu-Mo 329.2 118 572.1 317
    Aksug 俄罗斯 斑岩型 Cu 403 0.015 460 337 5.06 0.116 39
    Sora 俄罗斯 斑岩型 Cu 0.058 6 18 14 300 17.4 0.014 4.2
    Tominskoe 俄罗斯 斑岩型 Cu 0.004 1 080 241 0.964 0.072 17
    Voznesensk 俄罗斯 斑岩型 Cu-Mo-Au 380 1 100 10 100 3 400
    白乃庙 中国内蒙古 斑岩型 Cu-Mo-Au 433.95 0.106 134.2 254.3 201.9 11.04 1.17 0.181 2
    乌奴格吐山 中国内蒙古 斑岩型 Cu-Mo 171.6 0.015 215.8 919.8 512.8 435 45.0 0.077 33
    Zuun Mod
    Molybdenum
    蒙古 斑岩型 Cu-Mo 0.059 250 300 275 218 12.86 0.270 59
    南泥湖-三道庄 中国陕西 矽卡岩型 W-Mo 144 0.143 9 51 23.33 1 033.6 147.8 0.033 34
    金堆城 中国陕西 斑岩型 Mo 138 0.106 4.2 26 14.46 1 089 97.1 0.026 28
    黄龙铺 中国陕西 碳酸盐脉型 Mo-Pb 222 0.1 71 260 135 120 12 0.133 16
    沙坪沟 中国安徽 斑岩型 Mo-Cu 108.1 0.144 2.41 15.7 8.58 1582 245.9 0.012 20
    肖家营子 中国辽宁 矽卡岩型 Mo-Fe 161.4 0.23 21.75 163.1 64.3 8.87 10.05 0.148 1
    杨家杖子 中国辽宁 矽卡岩型 Mo 189 33.8 53.1 43.5 26.18 11
    大黑山 中国吉林 斑岩型 Mo 169 0.081 24.15 42.8 33.7 1045 149.72 0.002 2
    多宝山 中国黑龙江 斑岩型 Cu-Mo 474.5 0.02~0.03 353.9 729.4 492 951 15.22 0.149 142
    注:数据来源于参考文献统计
    下载: 导出CSV

    表  2  全球铼的独立矿物

    Table  2.   Independent minerals of rhenium in the world

    国家 发现地(矿床或岩体) 矿物名称 化学式 资料来源
    哈萨克斯坦 兹卡兹甘砂岩型铜矿床 Dzjezkazganite CuReS2 文献[42]
    哈萨克斯坦 兹卡兹甘砂岩型铜矿床 - Cu(Re, Mo)S4 文献[42-43]
    俄罗斯 Voronov Bor、Rybozero矿床 锇铜铼矿(Osmium-cupreous rheniite) (Re, Cu, Os, Fe)1S2 文献[35]
    日本、乌兹别克斯坦、德国 Kudryavyi火山的升华物;乌兹别克斯坦Sugraly砂岩型铀矿床;德国曼斯弗尔德铜矿的含铜页岩内 Rheniite ReS2 文献[14, 38-39]
    芬兰 - Tarkianite (Cu, Fe)(Re, Mo)4S8 文献[47]
    中国 丹巴杨柳坪铜镍硫化物矿床 - (Re, Cu, Os, Fe, Ni, Pb)1S2 文献[44]
    中国 丹巴杨柳坪铜镍硫化物矿床 - (Re, Cu, Fe)1S2 文献[44]
    美国 北亚利桑那州 氧化铼 Re2O7 文献[36, 39]
    苏联 外贝加尔钨矿床 自然铼 Re或Re0 文献[36-37]
    - 陨石 钌铼矿 Re97Ru3 文献[36, 39]
    美国 美国Stillwater超基性岩体 硫化铼 Re2S3 文献[41]
    加拿大 加拿大Coldwell杂岩体 - (Re, Mo, Fe, Cu)S3与Re(Mo, Cu, Fe)2S3 文献[45]
    瑞士或意大利 - - (Pb0.87Sr0.83Y0.43)(Ti14.4Fe6.05Re0.23Mn0.23)O38 文献[40]
    瑞典 瑞典Njuggtraskliden富镍超基性岩;瑞典Solvbacktjarn加里东铀矿化石英岩 - Cu(Re3, Mo)S8 文献[46]
    下载: 导出CSV

    表  3  铼在各类岩石中的丰度

    Table  3.   Abundance of rhenium in various rocks

    地质样品 wB/10-9 资料来源
    范围 平均值
    地核 291 文献[53]
    原始地幔 0.27 文献[53]
    亏损地幔 0.12 文献[58]
    洋壳 0.96 文献[58]
    陆壳 2 文献[59]
    超基性岩(橄榄岩) 0.003~1.15 文献[60-61]
    基性岩(辉长岩、辉绿岩、玄武岩) 0.36~1.5 文献[60-62]
    中性岩(闪长岩、二长岩、安山岩) <0.5 文献[60, 62]
    酸性岩(如花岗岩、斑岩、流纹岩) 0.22~1.14 文献[60-62]
    MORB 0.33~1.47 0.93 文献[58]
    OIB 0.1~0.642 0.35 文献[63]
    普通页岩 9~51 文献[61]
    黑色页岩 56~285 文献[61]
    富含硫化物的矿化黑色页岩 最高可达33 000 文献[61]
    缺氧沉积物 2~127 50 文献[65]
    含氧沉积物 <0.1 文献[65]
    下载: 导出CSV
  • [1] Vinogradov A P. Average concentration of chemical elements in the chief types of igneous rocks of the crust of the Earth[J]. Geochemistry, 1962, 7, 555-571.
    [2] Stein H J, Markey R J, Morgan J W, et al. The remarkable Re-Os chronometer in molybdenite: How and why it works[J]. Terra Nova, 2001, 13(6): 479-486. doi: 10.1046/j.1365-3121.2001.00395.x
    [3] Xiong Y L, Wood S A. Hydrothermal transport and deposition of rhenium under subcritical conditions (up to 200℃) in light of experimental studies[J]. Econimic Geology, 2001, 96(6): 1429-1444. http://www.researchgate.net/publication/284908569_Hydrothermal_Transport_and_Deposition_of_Rhenium_under_Subcritical_Conditionsup_to_200_C_in_Light_of_Experimental_Studies
    [4] Xiong Y L, Wood S A. Experimental determination of the hydrothermal solubility of ReS2 and the Re-ReO2 buffer assemblage and transport of rhenium under supercritical conditions[J]. Geochemical Transactions, 2002, 3(1): 1-10. doi: 10.1186/1467-4866-3-1
    [5] Berzina A N, Sotnikov V I, Economou-Eliopoulos M, et al. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia[J]. Ore Geology Review, 2005, 26(1/2): 91-113. http://www.sciencedirect.com/science/article/pii/S0169136804000496
    [6] Voudouris P, Melfos V, Spry P, et al. Rhenium-rich molybdenite and rheniite in the Pagoni Rachi Mo-Cu-Te-Ag-Au prospect, northern Greece: Implications for the Re geochemistry of porphyry-style Cu-Mo and Mo mineralization[J]. Canadian Mineralogist, 2009, 47(5): 1013-1036. doi: 10.3749/canmin.47.5.1013
    [7] Seo J H, Guillong M, Heinrich C A. Separation of molybdenum and copper in porphyry deposits: The roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon[J]. Economic Geology, 2012, 107(2): 333-356. doi: 10.2113/econgeo.107.2.333
    [8] John, D A, Taylor R D. By products of porphyry copper and molybdenum deposits[J]. Society of Economic Geologists, 2016, 18(7): 137-164. http://www.researchgate.net/publication/336543134_By-Products_of_Porphyry_Copper_and_Molybdenum_Deposits
    [9] Babo J, Spandler C, Oliver N H S, et al. The high-grade Mo-Re Merlin deposit, Cloncurry district, Australia: Paragenesis and geochronology of hydrothermal alteration and ore formation[J]. Economic Geology, 2017, 112(2): 397-422. doi: 10.2113/econgeo.112.2.397
    [10] U.S. Geological Survey(USGS). Mineral commodity summaries 2019: U.S. Geological Survey, 200P, https://doi.org/10.3133.70202434.
    [11] John D A, Seal R R, SEAL I I, et al. Critical mineral resources of the United States: Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, 2017, P1-P49, https://doi.org/10.3133/pp1802p.
    [12] 黄凡, 王登红, 王岩, 等. 中国铼矿成矿规律和找矿方向研究[J]. 地质学报, 2019, 93(6): 1253-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906007.htm

    Huang F, Wang D H, Wang Y, et al. Research on the metallogenic law and prospecting direction of rhenium deposits in China[J]. Acta Geologica Sinica, 2019, 93(6): 1253-1269(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906007.htm
    [13] 杨志明, 侯增谦, 周利敏, 等. 中国斑岩铜矿床中的主要关键矿产[J]. 科学通报, 2020, 65(33): 3653-3664. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033003.htm

    Yang Z M, Hou Z Q, Zhou L M, et al. Main key minerals in porphyry copper deposits in China[J]. Chinese Science Bulletin, 2020, 65(33): 3653-3664(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033003.htm
    [14] Tessalina S G, Yudovskaya M A, Chaplygin I V, et al. Sources of unique rhenium enrichment in fumaroles and sulphides at Kudryavy volcano[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 889-909. http://www.sciencedirect.com/science/article/pii/S0016703707006722
    [15] Mathur R, Ruiz J R, Munizaga F M. Insights into Andean metallogenesis from the perspective of Re-Os analyses of sulfides[C]//Anon. SERNAGEOMIN, South American isotope conference, Pucon, Chile 2001, 4.
    [16] 周清, 姜耀辉, 廖世勇, 等. 德兴斑岩铜矿床研究新进展[J]. 地质论评, 2013, 59(5): 933-940. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201305015.htm

    Zhou Q, Jiang Y H, Liao S Y, et al. New progress in the study of Dexing porphyry copper deposits[J]. Geological Review, 2013, 59(5): 933-940(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201305015.htm
    [17] 唐菊兴, 王友, 黎风佶, 等. 西藏谢通门县雄村铜金矿主要地质体形成的时限: 锆石U-Pb、辉钼矿Re-Os年龄的证据[J]. 矿床地质, 2010, 29(3): 461-475. doi: 10.3969/j.issn.0258-7106.2010.03.008

    Tang J X, Wang Y, Li F J, et al. The time limit of the formation of the main geological bodies of the Xiongcun copper-gold deposit in Xietongmen County, Tibet: Evidence of zircon U-Pb and molybdenite Re-Os ages[J]. Deposit Geology, 2010, 29(3): 461-475(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2010.03.008
    [18] 黄典豪. 东秦岭地区钼矿床中辉钼矿的铼含量及多型特征[J]. 岩石矿物学杂志, 1992, 11(1): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW199201009.htm

    Huang D H. Rhenium content and polytype characteristics of molybdenite in molybdenite deposits in Eastern Qinling area[J]. Journal of Rock and Mineralogy, 1992, 11(1): 74-84(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW199201009.htm
    [19] 李永峰, 王春秋, 白凤军, 等. 东秦岭钼矿Re-Os同位素年龄及其成矿动力学背景[J]. 矿产与地质, 2004, 18(6): 571-578. doi: 10.3969/j.issn.1001-5663.2004.06.014

    Li Y F, Wang C Q, Bai F J, et al. Re-Os isotopic ages of the molybdenum deposit in the East Qinling and its mineralization dynamic background[J]. Mineral Resources and Geology, 2004, 18(6): 571-578(in Chinese with English abstract). doi: 10.3969/j.issn.1001-5663.2004.06.014
    [20] 孟祥金. 安徽沙坪沟斑岩钼矿锆石U-Pb和辉钼矿Re-Os年龄[J]. 地质学报, 2012, 86(3): 486-494. doi: 10.3969/j.issn.0001-5717.2012.03.010

    Meng X J. Zircon U-Pb and molybdenite Re-Os ages of the porphyry molybdenum deposit in Shapinggou, Anhui[J]. Acta Geologica Sinica, 2012, 86(3): 486-494(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2012.03.010
    [21] Aminzadeh B, Shahabpour J, Maghami M. Variation of rhenium contents in molybdenites from the Sar Cheshmeh porphyry Cu-Mo deposit in Iran[J]. Resource Geology, 2011, 61(3): 290-295. doi: 10.1111/j.1751-3928.2011.00165.x
    [22] 杨宗锋, 罗照华, 卢欣祥, 等. 关于辉钼矿中Re含量示踪来源的讨论[J]. 矿床地质, 2011, 30(4): 654-674. doi: 10.3969/j.issn.0258-7106.2011.04.006

    Yang Z F, Luo Z H, Lu X X, et al. Discussion on the trace source of Re content in molybdenite[J]. Deposit Geology, 2011, 30(4): 654-674(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2011.04.006
    [23] 刘芳, 宋史刚, 丁振举, 等. 甘肃小柳沟钨钼矿床Re-Os、Ar-Ar同位素定年及其成矿意义[J]. 地质科技情报, 2013, 32(6): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306012.htm

    Liu F, Song S G, Ding Z J, et al. Re-Os and Ar-Ar isotopic dating of the Xiaoliugou tungsten-molybdenum deposit in Gansu and its metallogenic significance[J]. Geological Science and Technology Information, 2013, 32(6): 65-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306012.htm
    [24] 谢桂青, 赵海杰, 赵财胜, 等. 鄂东南铜绿山矿田矽卡岩型铜铁金矿床的辉钼矿Re-Os同位素年龄及其地质意义[J]. 矿床地质, 2009, 28(3): 227-239. doi: 10.3969/j.issn.0258-7106.2009.03.001

    Xie G Q, Zhao H J, Zhao C S, et al. The molybdenite Re-Os isotopic age of the skarn copper-iron-gold deposit in the Tonglushan ore field in Southeast Hubei and its geological significance[J]. Deposit Geology, 2009, 28(3): 227-239(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2009.03.001
    [25] 黄典豪, 杜安道, 吴澄宇, 等. 华北地台钼(铜)矿床成矿年代学研究: 辉钼矿铼-锇年龄及其地质意义[J]. 矿床地质, 1996, 15(4): 365-373. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ604.008.htm

    Huang D H, Du A D, Wu C Y, et al. Metallogenic chronology of molybdenum (copper) deposits on the North China platform: Molybdenite rhenium-osmium age and its geological significance[J]. Deposit Geology, 1996, 15(4): 365-373(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ604.008.htm
    [26] 代军治, 毛景文, 杜安道, 等. 辽西肖家营子钼(铁)矿床Re-Os年龄及其地质意义[J]. 地质学报, 2007, 81(7): 917-923. doi: 10.3321/j.issn:0001-5717.2007.07.006

    Dai J Z, Mao J W, Du A D, et al. Re-Os age of the Xiaojiayingzi molybdenum (iron) deposit in western Liaoning and its geological significance[J]. Acta Geologica Sinica, 2007, 81(7): 917-923(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2007.07.006
    [27] 应立娟, 王登红, 唐菊兴, 等. 西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义[J]. 地质学报, 2010, 84(8): 1166-1174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008010.htm

    Ying L J, Wang D H, Tang J X, et al. Re-Os dating of molybdenite from Jiama copper polymetallic deposit in Tibet and its metallogenic significance[J]. Acta Geologica Sinica, 2010, 84(8): 1166-1174(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008010.htm
    [28] 唐菊兴, 邓世林, 郑文宝, 等. 西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J]. 矿床地质, 2011, 30(2): 179-196. doi: 10.3969/j.issn.0258-7106.2011.02.002

    Tang J X, Deng S L, Zheng W B, et al. Exploration model of Jiama copper polymetallic deposit in Mozhugongka County, Tibet[J]. Deposit Geology, 2011, 30(2): 179-196(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2011.02.002
    [29] 张苏坤, 郑有业, 张刚阳, 等. 西藏曲水县鸡公村石英脉型钼矿床成矿时代约束[J]. 矿床地质, 2013, 32(3): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201303014.htm

    Zhang S K, Zheng Y Y, Zhang G Y, et al. Mineralization age constraints of the quartz vein-type molybdenum deposit in Jigong Village, Qushui County, Tibet[J]. Deposit Geology, 2013, 32(3): 187-194(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201303014.htm
    [30] 王健, 魏启荣, 次琼, 等. 西藏鸡公村钼矿区中酸性岩体的时代、岩石地球化学特征及构造背景[J]. 地学前缘, 2018, 25(6): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806014.htm

    Wang J, Wei Q R, Ci Q, et al. Age, petrogeochemical characteristics and tectonic background of the acidic rock mass in the molybdenum mining area of Jigongcun, Tibet[J]. Earth Science Frontiers, 2018, 25(6): 153-164(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806014.htm
    [31] 王正其, 潘家永, 曹双林, 等. 层间氧化带分散元素铼与硒的超常富集机制探讨: 以伊犁盆地扎吉斯坦层间氧化带砂岩型铀矿床为例[J]. 地质论评, 2006, 52(3): 358-362. doi: 10.3321/j.issn:0371-5736.2006.03.017

    Wang Z Q, Pan J Y, Cao S L, et al. Discussion on the extraordinary enrichment mechanism of the dispersed elements rhenium and selenium in the interlayer oxidation zone: Taking the interlayer oxidation zone sandstone-type uranium deposit in the Yili Basin as an example[J]. Geological Review, 2006, 52(3): 358-362(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2006.03.017
    [32] 曾爱花. 新疆511铀矿床7号采区U-Se-Re-Mo等元素分布特点[J]. 矿床地质, 2012, 31(1): 139-150. doi: 10.3969/j.issn.0258-7106.2012.01.012

    Zeng A H. Distribution characteristics of U-Se-Re-Mo and other elements in No. 7 mining area of Xinjiang 511 uranium deposit[J]. Deposit Geology, 2012, 31(1): 139-150(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.01.012
    [33] Singer D A, Berger V I, Moring B C. Porphyry copper deposits of the world-database and grade and tonnage models[R/OL]. 2008: U.S. Geological Survey Open-File Report 2008-1155, 45 p., http://pubs.usgs.gov/of/2008/1155/.
    [34] Golden J, Mcmillan M, Downs R T, et al. Rhenium variations in molybdenite(MoS2): Evidence for progressive subsurface oxidation[J]. Earth and Planetary Sciences Letters, 2013, 366(2): 1-5. http://www.sciencedirect.com/science/article/pii/S0012821X13000514
    [35] Lavrov O B, Kuleshevich L V. The first finds of rhenium minerals in Karelia[J]. Doklady Earth Sciences, 2010, 432(1): 598-601. doi: 10.1134/S1028334X10050107
    [36] 杨敏之. 含铼矿床的新成因类型及其地质找矿方向[J]. 地质地球化学, 1983(1): 13-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198301003.htm

    Yang M Z. New genetic types of rhenium-bearing deposits and their geological prospecting direction[J]. Geology and Geochemistry, 1983(1): 13-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198301003.htm
    [37] Bobrov A, Hurskiy D, Merkushyn I, et al. The first occurrence of native rhenium in natural geological systems[abs. ] [C/OL]. 33rd International Geological Congress, 6-14 August 2008, Oslo, Norway (abstracts): International Geological Congress, 33d, Oslo, Norway, 2008, accessed February 11, 2013, at http://www.cprm.gov.br/33IGC/1342433.html.
    [38] Seltmann R, Shatov V, Yakubchuk A. Mineral deposits database and thematic maps of Central Asia, scale 1: 1500000: Explanatory Notes to ArcView 3.2 and Mapinfo 7 GIS packages[R]. London: Centre for Russian and Central Asian Mineral Studies, NHM London, 2005.
    [39] 王瑞江, 王登红, 李健康, 等. 稀有稀土稀散矿产资源及其开发利用[M]. 北京: 地质出版社, 2015.

    Wang R J, Wang D H, Li J K, et al. Rare rare earth mineral resources and their development and utilization[M]. Beijing: Geological Publishing House, 2015(in Chinese).
    [40] Sarp H, Bertran J, Deferne J, et al. A complex rhenium-rich titanium and iron oxide of the Crichtonitesenaite Group[J]. Neues Jahrbuch Fuer Mineralogie. Monatshefte, 1981, 10(1): 433-442. http://www.researchgate.net/publication/321865030_A_complex_rhenium-rich_titanium_and_iron_oxide_of_the_crichtonite-_senaite_group
    [41] Volborth A. Tarkian M, Stumpfl E F, et al. A survey of the Pd-Pt mineralization along the 35 km strike of the J.M. Reef, Stillwater complex, Montana[J]. Canadian Mineralogist, 1986, 24(1): 329-346. http://pubs.geoscienceworld.org/canmin/article-pdf/24/2/329/3446137/329.pdf
    [42] Poplavko E M, Marchukova I D, Zak C S. A rhenium mineral in the ores of the Dzhezkazgan deposits(In Russian)[J]. Doklady Akad. Nauk. SSSR, 1962, 146: 433-436.
    [43] Box S E, Syusyura B, Seltmann R, et al. Dzhezkazgan and associated sandstone copper deposits of the Chu-Sarysu Basin, Central Kazakhstan[J]. Economic Geology, 2017, 16: 303-328. http://www.researchgate.net/publication/345822783_Dzhezkazgan_and_Associated_Sandstone_Copper_Deposits_of_the_Chu-Sarysu_Basin_Central_Kazakhstan
    [44] 戴婕, 杜谷, 徐金沙, 等. 丹巴杨柳坪地区铜镍硫化物矿床发现铼矿物[J]. 矿物学报, 2015, 35(1): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201501017.htm

    Dai J, Du G, Xu J S, et al. Discovery of rhenium minerals from copper-nickel sulfide deposits in Yangliuping area of Danba[J]. Acta Mineralogy Sinica, 2015, 35(1): 107-112(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201501017.htm
    [45] Tarkian M, Housley R M, Volborth A, et al. Unnamed Re-Mo-Cu sulfide from Stillwater complex, and crystal chemistry of its synthetic equivalent spinel type (Cu, Fe)(Re, Mo)4S8[J]. European Journal of Mineralogy, 1991, 3(6): 977-982. doi: 10.1127/ejm/3/6/0977
    [46] Ekstrom M, Halenius U. A new rhenium-rich sulphide from two Swedish localities[J]. Neues Jahrbuch für Mineralogie-Monatshefte, 1982, 1982(1): 6-10. http://www.researchgate.net/publication/322437039_A_new_rhenium-rich_sulphide_from_two_Swedish_localities
    [47] Kojonen K K, Roberts A C, Iaomäki O P, et al. Tarkianite, (Cu, Fe) (Re, Mo)4S8: A new mineral species from the Hitura mine, Nivala, Finland[J]. The Canadian Mineralogist, 2004, 42(4): 539-544. http://www.researchgate.net/publication/237733371_Tarkianite_CuFeReMo4S-8_a_new_mineral_species_from_the_Hitura_Mine_Nivala_Finland
    [48] 肖静珊, 李峰, 杨帆, 等. 云南澜沧老厂斑岩钼(铜)矿体中Re-Mo关系研究[J]. 地质科技情报, 2011, 30(2): 97-101. doi: 10.3969/j.issn.1000-7849.2011.02.016

    Xiao J S, Li F, Yang F, et al. Research on Re-Mo relationship in Laochang porphyry molybdenum (copper) orebody in Lancang, Yunnan[J]. Geological Science and Technology Information, 2011, 30(2): 97-101(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2011.02.016
    [49] Rathkopf C, Mazdab F, Barton I, et al. Grain-scale and deposit-scale heterogeneity of redistribution in molybdenite at the Bagdad porphyry Cu-Mo deposit, Arizona[J]. Journal of Geochemical Exploration, 2017, 178(5): 45-54. http://www.geo.arizona.edu/sites/www.geo.arizona.edu/files/Rathkopf2017BagdadReDist.pdf
    [50] McFall K, Roberts S, McDonald I. Rhenium enrichment in the Muratdere Cu-Mo (Au-Re) porphyry deposit, Turkey: Evidence from stable isotope analyses (δ34S, δ18O, δD) and laser ablation-inductively coupled plasma-mass spectrometry analysis of sulfides[J]. Economic Geology, 2019, 114(7): 1443-1466. doi: 10.5382/econgeo.4638
    [51] Ciobanu C L, Cook N J, Kelson C R, et al. Trace element heterogeneity in molybdenite fingerprints stages of mineralization[J]. Chemical Geology, 2013, 347(3): 175-189. http://www.sciencedirect.com/science/article/pii/S0009254113001253
    [52] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 地质出版社, 1984.

    Liu Y J, Cao L M, Li Z L, et al. Elemental geochemistry[M]. Beijing: Geological Publishing House, 1984(in Chinese).
    [53] 涂光炽, 高振敏, 胡瑞忠, 等. 分散元素地球化学及其成矿机制[M]. 北京: 地质出版社, 2004.

    Tu G C, Gao Z M, Hu R Z, et al. Geochemistry of dispersed elements and their metallogenic mechanism[M]. Beijing: Geological Publishing House, 2004(in Chinese).
    [54] Ivanov V V, Poplavko E M, Corokhova V N. The geochemistry of rhenium[M]. International Geology Review, 1972, 14(1): 1-105.
    [55] 定立, 赵元艺, 刘妍, 等. 江西永平铜矿外围护架山钻孔ZK725岩矿相学特征及意义[J]. 地质学报, 2013, 87(11): 1715-1730. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201311007.htm

    Ding L, Zhao Y Y, Liu Y, et al. Petrographic characteristics and significance of Borehole ZK725 in the outer Hujiashan of Yongping Copper Mine, Jiangxi Province[J]. Acta Geologica Sinica, 2013, 87(11): 1715-1730(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201311007.htm
    [56] Helz G R, Dolor M K. What regulates rhenium deposition in euxinic basins?[J]. Chemical Geology, 2012, 304/305(4): 131-141. http://www.sciencedirect.com/science/article/pii/S0009254112000824
    [57] 黎彤, 倪守斌. 地球和地壳的化学元素丰度[M]. 北京: 地质出版社, 1990.

    Li T, Ni S B. The abundance of chemical elements in the Earth and the crust[M]. Beijing: Geological Publishing House, 1990(in Chinese).
    [58] Sun W D, Arculus R J, Bennett V C, et al. Evidence for rhenium enrichment in the mantle wedge from submarine arc-like volcanic glasses (Papua New Guinea)[J]. Geology, 2003, 31(10): 845-848. doi: 10.1130/G19832.1
    [59] Li Y. Chalcophile element partitioning between sulfide phases and hydrous mantle melt: Applications to mantle melting and the formation of ore deposits[J]. Journal of Asian Earth Sciences, 2014, 94(8): 77-93. http://www.sciencedirect.com/science/article/pii/S1367912014003526
    [60] Morgan J W, Lovering J F. Rhenium and osmium aboundances in some igneous and metamorphic rocks[J]. Earth and Planetary Science Letters, 1967, 3(3): 219-224. http://www.sciencedirect.com/science/article/pii/0012821X67900416
    [61] Morgan J W. Rhenium[C]//Marshall C P, Fairbridge R W. Encyclopedia of geochemistry. Kluwer: Academic Publishers, 1999.
    [62] Morris D F C, Fifield F W. Rhenium content of rocks[J]. Geochimica et Cosmochimica Acta, 1961, 25(3): 232-233. doi: 10.1016/0016-7037(61)90079-5
    [63] Hauri E H, Hart S R. Rhenium abundances and systematics in oceanic basalts[J]. Chemical Geology, 1997, 139(1): 185-205. http://www.sciencedirect.com/science/article/pii/S0009254197000351
    [64] Sun W D, Bennett V C, Kamenetsky V S. The mechanism of Re enrichment in arc magmas: Evidence from Lau Basin basaltic glasses and primitive melt inclusions[J]. Earth and Planetary Science Letters, 2004, 222(1): 101-114. doi: 10.1016/j.epsl.2004.02.011
    [65] Koide M, Hodge V F, Yang J S, et al. Some comparative marine chemistries of rhenium, gold silver and molybdenum[J]. Application Geochemistry, 1986, 1(6): 705-714. doi: 10.1016/0883-2927(86)90092-2
    [66] Ravizza G, Turekian K K, Hay B J. The geochemistry of rhenium and osmium in recent sediments from Black Sea[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3741-3752. doi: 10.1016/0016-7037(91)90072-D
    [67] Colodner D, Sachs J, Ravizza G, et al. The geochemical cycle of rhenium: A reconnaissance[J]. Earth and Planetary Science Letters, 1993, 117(1/2): 205-221. http://www.sciencedirect.com/science/article/pii/0012821X9390127U
    [68] Colodner D, Edmond J, Boyle E. Rhenium in the Black Sea: Comparation with molybdenum and uranium[J]. Earth and Planetary Science Letters, 1995, 131(1/2): 1-15. http://www.sciencedirect.com/science/article/pii/0012821X9500010A
    [69] Crusius J, Calvert S E, Pedersen T F, et al. Rhenium and molybdenum enrichment in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145(1/4): 65-78. http://www.sciencedirect.com/science/article/pii/S0012821X9600204X
    [70] Sun W D, Bennett V C, Eggins S M, et al. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas[J]. Nature, 2003, 422: 294-297. doi: 10.1038/nature01482
    [71] Mao J W, Zhang Z, Zhang Z, et al. Re-Os isotopic dating of molybdenites in the Xiaoliugou (Mo) deposit in the northern Qilian Mountains and its geological significance[J]. Geochimica et Cosmochimica Acta, 1999, 63(11): 1815-1818. http://www.sciencedirect.com/science/article/pii/S0016703799001659
    [72] Li Y. Comparative geochemistry of rhenium in oxidized arc magmas and MORB and rhenium partitioning during magmatic differentiation[J]. Chemical Geology, 2014, 386(8): 101-114. http://www.sciencedirect.com/science/article/pii/S000925411400388X
    [73] Bernard A, Symonds R B, Rose W I. Volatile transport and deposition of Mo, W and Re in high temperature magmatic fluids[J]. Application Geochemistry, 1990, 5(3): 317-326. doi: 10.1016/0883-2927(90)90007-R
    [74] Xiong Y L, Wood S A, Kruseewski J. Hydrothermal transportand deposition of rhenium under subcritical conditions revisited[J]. Economic Geology, 2006, 101(2): 471-478. doi: 10.2113/gsecongeo.101.2.471
    [75] 李娜, 张振芳, 王靓靓, 等. 战略性新兴产业若干关键矿产开发应用与展望[M]. 北京: 地质出版社, 2020.

    Li N, Zhang Z F, Wang L L, et al. Development, application and prospects of several key minerals in strategic emerging industries[M]. Beijing: Geological Publishing House, 2020(in Chinese).
    [76] 黄诚, 张德会. 热液金矿成矿元素运移和沉淀机理研究综述[J]. 地质科技情报, 2013, 32(4): 162-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304025.htm

    Huang C, Zhang D H. A review of the research on the migration and precipitation mechanism of metallogenic elements in hydrothermal gold deposits[J]. Geological Science and Technology Information, 2013, 32(4): 162-170(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304025.htm
    [77] Morford J L, Martin W R, Carney C M. Rhenium geochemical cycling: Insights from continental margins[J]. Chemical Geology, 2012, 324/325(5): 73-86. http://www.sciencedirect.com/science/article/pii/S0009254111005031
    [78] Sheen A I, Kendall B, Reinhard C T, et al. A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic Ocean Anoxia[J]. Geochimica et Cosmochimica Acta, 2018, 227(1): 75-95. http://www.sciencedirect.com/science/article/pii/S0016703718300668
    [79] Crusius J, Thomson J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2233-2242. doi: 10.1016/S0016-7037(99)00433-0
    [80] Frondel J W, Wickman F E. Molybdenite polytypes in theory and occurrence: II. Some naturally-occurring polytypes of molybdenite[J]. American Mineralogist, 1970, 55(11/12): 1857-1875. http://www.researchgate.net/publication/284651884_Molybdenite_polytypes_in_theory_and_occurrence_II_Some_naturally-occurring_polytypes_of_molybdenite
    [81] Newberry R J J. Polytypism in molybdenite(II): Relationships between polytypism, ore deposition, alteration stages and rhenium contents[J]. American Mineralogist, 1979, 64(5): 768-775. http://ci.nii.ac.jp/naid/10030174540
    [82] Wang S M, Zhang J Z, He D W, et al. Sulfur-catalyzed phase transition in MoS2 under high pressure and temperature[J]. Journal of Physics and Chemistry of Solids, 2014, 75(1): 100-104. doi: 10.1016/j.jpcs.2013.09.001
    [83] Mccandless T E, Ruiz J R, Campbell A R. Rhenium behavior in molybdenite in hypogene and near-surface environments: Implications for Re-Os geochronometry[J]. Geochimica et Cosmochimica Acta, 1993, 57(4): 889-905. doi: 10.1016/0016-7037(93)90176-W
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  970
  • PDF下载量:  616
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-26

目录

    /

    返回文章
    返回