留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶水流系统识别方法及其在引调水工程隧洞选线中的应用

颜慧明 常威 郭绪磊 邓争荣 黄琨

颜慧明, 常威, 郭绪磊, 邓争荣, 黄琨. 岩溶水流系统识别方法及其在引调水工程隧洞选线中的应用[J]. 地质科技通报, 2022, 41(1): 127-136. doi: 10.19509/j.cnki.dzkq.2022.0008
引用本文: 颜慧明, 常威, 郭绪磊, 邓争荣, 黄琨. 岩溶水流系统识别方法及其在引调水工程隧洞选线中的应用[J]. 地质科技通报, 2022, 41(1): 127-136. doi: 10.19509/j.cnki.dzkq.2022.0008
Yan Huiming, Chang Wei, Guo Xulei, Deng Zhengrong, Huang Kun. Identification of the karst water flow system and its application in the tunnel line selection of water diversion projects[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 127-136. doi: 10.19509/j.cnki.dzkq.2022.0008
Citation: Yan Huiming, Chang Wei, Guo Xulei, Deng Zhengrong, Huang Kun. Identification of the karst water flow system and its application in the tunnel line selection of water diversion projects[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 127-136. doi: 10.19509/j.cnki.dzkq.2022.0008

岩溶水流系统识别方法及其在引调水工程隧洞选线中的应用

doi: 10.19509/j.cnki.dzkq.2022.0008
基金项目: 

国家自然科学基金项目 42172281

详细信息
    作者简介:

    颜慧明(1975-), 男, 高级工程师, 主要从事工程地质与水文地质研究工作。E-mail: yyyhm@263.net

    通讯作者:

    黄琨(1984-), 男, 副教授, 博士生导师, 主要从事岩溶水文地质方面的研究工作。E-mail: cugdr_huang@cug.edu.cn

  • 中图分类号: P641.1

Identification of the karst water flow system and its application in the tunnel line selection of water diversion projects

  • 摘要: 某国家重大引调水工程引水隧洞将穿越聚龙山向斜可溶岩地层,可能面临严重岩溶涌突水问题。为了查明隧洞突涌水条件,选择岩溶水害风险较低的引水方案,综合采用岩溶水文地质调查、水化学与同位素分析等方法对聚龙山向斜岩溶水流系统特征进行了识别。结果表明:聚龙山向斜含水系统具有"两含夹一隔"的多层结构,下部二叠系主要为埋藏型岩溶弱发育区,而上部三叠系裸露型岩溶区中发育了具有多级水流系统的巨型岩溶汇水盆地。穿聚龙山向斜段工程论证的3个方案中,A线方案从向斜西段岩溶水系统的补给区穿越,隧洞穿可溶岩段长度短、且全部为埋藏型岩溶,剖面上绕避了三叠系岩溶汇水盆地,发生岩溶涌突水的风险低;而B线方案和C线方案均进入了三叠系岩溶汇水盆地,穿越裸露型可溶岩段的长度大,遭遇高压岩溶突水的风险高,故推荐A线引水方案。研究成果可为引水隧洞线路比选提供科学依据,对类似深埋长隧洞工程建设也具有参考价值。

     

  • 图 1  研究区综合水文地质图

    Figure 1.  Comprehensive hydrogeological map of the study area

    图 2  聚龙山向斜地区大气降水氢氧同位素组成特征(a)及与高程(b)的关系

    Figure 2.  Characteristics of hydrogen and oxygen isotope composition (a) and the relationship with elevation (b) of atmospheric precipitation in the area of Julongshan syncline

    图 3  聚龙山向斜多级地下水流系统剖面示意图

    Figure 3.  Profile diagram of the multi-stage groundwater flow system of Julongshan syncline

    图 4  C5钻孔揭露深部岩溶现象

    Figure 4.  Deep karst phenomenon revealed by C5 borehole

    图 5  A线穿聚龙山向斜段水文地质剖面图

    Figure 5.  Hydrogeographic profile of the A line through the Julongshan syncline

    图 6  B线聚龙山向斜汇水盆地水文地质剖面图

    Figure 6.  Hydrogeographic profile of the B line through the Julongshan syncline

    图 7  C线聚龙山向斜水文地质剖面图

    Figure 7.  Hydrogeographic profile of the C line through the Julongshan syncline

    表  1  水化学测试结果

    Table  1.   Hydrochemistry test results

    编号 取样位置 高程/ m 流量/ (L·s-1) 温度/ ℃ TDS Cl- HCO3- SO42- Ca2+ K+ Mg2+ Na+ SICal SIDol δD/‰ δ18O/‰ 补给高程/m
    ρB/(mg·L-1)
    W1 聚龙山向斜西段 龙坪 1 132 2.5 12.9 151.00 6.06 244.00 14.06 76.26 0.45 1.24 0.64 0.32 -0.98 -52.84 -8.41 1 162
    W2 龙坪深井 1 089 - 14.2 413.36 3.64 316.30 22.01 65.53 0.30 4.17 1.41 0.36 -2.23 -57.79 -8.82 1 303
    W3 榔树岗泉 877 100 13.5 157.30 4.43 251.40 13.13 54.80 0.45 1.98 0.80 -0.16 -1.57 -53.54 -8.51 1 174
    W4 何家冲泉 844 80 16.4 193.60 3.69 156.20 12.96 74.08 0.30 1.47 0.64 0.60 -0.27 -53.42 -8.49 1 165
    W5 杜家冲 812 10 13.6 199.00 5.45 335.50 17.63 82.33 0.29 9.80 0.73 -0.15 -1.04 -50.13 -7.92 928
    W6 阴坡台子 804 20 14.5 213.00 11.31 311.10 18.55 88.64 0.55 1.64 1.04 0.62 -0.29 -48.91 -7.74 853
    W7 紫龙寺泉 775 100 16.3 206.80 4.84 324.00 16.32 74.93 0.42 2.71 0.68 -0.09 -1.40 -51.82 -8.15 1 024
    W8 聚龙山向斜中段 漳河源 772 100 16.3 126.00 3.43 213.50 12.71 48.75 0.39 8.09 0.51 0.66 0.77 -52.75 -8.27 1 074
    W9 星辰洞暗河 621 2 000 17.9 213.00 4.84 359.90 16.07 86.20 0.56 7.08 0.74 0.18 -0.47 -52.36 -8.27 1 074
    W10 黑龙洞 445 100 22.0 226.00 3.41 142.80 20.86 97.25 0.34 5.14 0.40 0.04 -0.88 -51.25 -7.97 949
    W11 甘溪暗河 395 1 000 14.1 189.20 4.31 79.30 14.75 68.55 0.49 5.08 0.59 -0.54 -2.01 -50.51 -7.99 957
    W13 滴水岩 360 50 14.0 259.05 3.82 195.50 15.54 109.65 0.45 6.27 0.58 -0.09 -1.23 -52.38 -8.16 1 028
    W15 仙鱼洞 353 2 000 15.4 189.00 4.14 193.40 15.08 73.52 0.48 7.91 0.59 -0.21 -1.18 -50.26 -7.78 870
    W12 聚龙山向斜东段 西泉庙 377 500 16.5 369.05 3.71 378.20 19.85 93.91 0.40 9.23 0.57 1.97 3.20 -51.26 -7.77 865
    W14 北庙泉 357 1 500 18.5 367.40 4.91 372.10 17.94 89.14 0.59 9.25 0.67 1.46 2.21 -50.89 -7.73 849
    W16 千鱼泉 342 300 17.6 398.20 4.68 396.50 22.13 105.92 0.46 7.86 0.63 2.03 3.32 -50.41 -8.13 1 015
    W17 十姑洞 332 800 18.4 355.85 4.51 414.80 23.82 108.11 0.44 6.10 0.62 0.93 0.87 -49.26 -7.80 878
    W18 磨眼泉 330 360 17.8 396.00 4.24 396.50 20.68 98.85 0.41 9.79 0.59 1.92 3.11 -51.09 -7.81 882
    W19 海洋泉 323 300 15.5 393.80 4.17 408.70 20.49 105.30 0.38 7.10 0.61 1.43 1.92 -50.02 -8.04 978
    W20 小龙潭 296 100 16.1 379.50 3.79 390.40 24.98 96.26 0.26 9.42 0.58 1.57 2.36 -48.74 -7.73 849
    W21 三眼泉 259 3 100 16.9 375.10 5.23 372.10 21.24 92.27 0.52 8.70 0.86 0.87 0.95 -49.38 -7.64 811
    W22 骠马洞 252 300 15.8 188.00 4.49 305.00 19.73 74.25 0.46 7.82 0.68 -0.04 -2.3 -50.22 -8.06 986
    W23 潮水洞 242 100 16.5 443.85 4.73 463.60 25.16 119.60 0.36 7.18 0.70 0.95 0.91 -50.21 -7.94 936
    W24 响水洞 224 300 16.2 243.00 4.44 378.20 22.02 105.40 0.39 6.09 0.69 0.11 -0.22 -48.00 -7.84 895
    W25 寨沟泉 214 100 16.8 261.00 3.97 433.10 25.29 122.77 0.30 2.73 0.70 0.11 -2.36 -49.48 -7.95 940
    W26 上泉坪 211 360 17.5 412.50 3.71 427.00 24.45 101.03 0.35 11.29 0.66 1.03 1.36 -50.89 -7.96 945
    注:SICalSIDol分别为方解石、白云石矿物饱和指数
    下载: 导出CSV

    表  2  钻孔揭露局部深岩溶现象特征

    Table  2.   Characteristics of deep karst phenomenon revealed by drilling

    钻孔编号 孔口高程/m 局部深岩溶下限高程/m 线路 描述
    B1 696.55 76.75 B线 沿结构面溶蚀风化,局部呈1~2 cm缝状
    B2 891.39 79.39 沿结构面溶蚀充泥
    C1 380 104 C线 沿结构面溶蚀风化,附泥钙质
    C2 348.45 108.45 蜂窝状溶蚀孔洞,孔洞宽2~5 mm
    C3 330 68.8 多沿结构面及方解石细脉溶蚀风化
    C4 360 98 溶蚀晶孔较发育,呈蜂窝状
    C5 544.4 -4 溶蚀孔洞,无充填,面附泥质
    下载: 导出CSV

    表  3  聚龙山向斜区各线路方案岩溶水文地质比选

    Table  3.   A comparison of karst hydrogeology of the various routes in Julongshan syncline

    比选指标 A线 B线 C线
    穿越的构造部位 聚龙山向斜西段 聚龙山向斜中段 聚龙山向斜东段
    可溶岩地层时代 P1q+m P1q+m、T1d+j P1q+m、T1d+j
    可溶岩段长度/km 2.45 30.85 40.44
    埋藏型岩溶长度/km及占比/% 2.45/100 4.60/14.91 2.44/6.03
    裸露型岩溶长度/km及占比/% 0/0 26.25/85.09 38.00/93.97
    隧洞埋藏深度/m 900~1 100 500~1 100 200~500
    岩溶水系统部位 平面 补给区 径流区 径流-排泄区
    剖面 深部循环带 深部循环带 浅部循环带
    围岩含水介质类型 裂隙 裂隙-溶隙 溶隙-管道
    水害风险
    下载: 导出CSV
  • [1] 钮新强, 张传健. 复杂地质条件下跨流域调水超长深埋隧洞建设需研究的关键技术问题[J]. 隧道建设, 2019, 39(4): 523-536. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201904001.htm

    Niu X Q, Zhang C J. Some key technical issues on construction of ultra-long deep-buried water conveyance tunnel under complex geological conditions[J]. Tunnel Construction, 2019, 39(4): 523-536(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201904001.htm
    [2] Chang Q, Sun X, Zhou H, et al. A multivariate matrix model of analysing mine water bursting and its application[J]. Desalination and Water Treatment, 2018, 123: 20-26. doi: 10.5004/dwt.2018.22331
    [3] Yang Y N, Zhang Q, Xu M. Numerical simulation method utilization in water gushing yield forecasting of Paoziling Tunnel in Hunan Province, China[J]. Applied Mechanics & Materials, 2014, 580/583: 1392-1397.
    [4] Fan H B, Zhang Y H, He S Y, et al. Hazards and treatment of karst tunneling in Qinling-Daba mountainous area: Overview and lessons learnt from Yichang-Wanzhou railway system[J]. Environmental Earth Sciences, 2018, 77(19): 679-696. doi: 10.1007/s12665-018-7860-1
    [5] Xia W, Shi-Ru W. Study on water inflow estimation of highway tunnel karst cave in karst area[C]//20183rd International Conference on Smart City and Systems Engineering (ICSCSE), 2018.
    [6] 汪云, 杨海博, 郑梦琪, 等. 岩溶区深埋隧洞水文地质概念模型及突水模式[J]. 人民黄河, 2019, 41(7): 126-130. doi: 10.3969/j.issn.1000-1379.2019.07.027

    Wang Y, Yang H B, Zheng M Q, et al. Hydrogeological conceptual model and water inflow pattern analysis of deep diversion tunnel in karst area[J]. Yellow River, 2019, 41(7): 126-130(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1379.2019.07.027
    [7] Zhu Q Q, Miao Q Q, Jiang S P. On karst water inrush (gushing) geological environment in Pingyang Tunnel[J]. Applied Mechanics and Materials, 2014, 580/583: 1008-1012. doi: 10.4028/www.scientific.net/AMM.580-583.1008
    [8] 常威, 谭家华, 黄琨, 等. 地下水多元示踪试验在岩溶隧道水害预测中的应用: 以张吉怀高铁兰花隧道为例[J]. 中国岩溶, 2020, 39(3): 400-408. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003014.htm

    Chang W, Tan J H, Huang K, et al. Application of groundwater multi-element tracing tests to water hazard prediction of karst tunnels: An example of the Lanhua Tunnel on the Zhangjiajie-Jishou-Huaihua high-speed railway[J]. Carsologica Ainica, 2020, 39(3): 400-408(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003014.htm
    [9] 金新锋. 宜万铁路沿线岩溶发育规律及其对隧道工程的影响[D]. 北京: 中国地质科学院, 2007.

    Jin X F. Regularity of karst development along the Yichang-Wanzhou railway and its infuence on tunnel construction[D]. Beijing: Chinese Academy of Geological Sciences, 2007(in Chinese with English abstract).
    [10] 郭绪磊. 基于SAC改进模型的岩溶流域降水-径流过程模拟研究: 以宜昌泗溪流域为例[D]. 武汉: 中国地质大学(武汉), 2019.

    Guo X L. A case study on the simulation of precipitation and runoff process in karst basin based on modified SAC model[D]. Wuhan: China University of Geosciences(Wuhan), 2019(in Chinese with English abstract).
    [11] 韦澧佩. 岩溶水环境约束下的引水隧洞线路优选研究[D]. 成都: 成都理工大学, 2018.

    Wei L P. Research on the optimization of diversion tunnel route under the constraint of karst water environment: Take the wase segment of Mid-Yunnan Water Diversion Project as an example[D]. Chengdu: Chengdu University of Technology, 2018(in Chinese with English abstract).
    [12] 钟玲敏, 许模, 吴明亮, 等. 多级水流系统耦合下深部岩溶分异研究: 以川东隔挡式构造区中梁山背斜南段为例[J]. 水文地质工程地质, 2018, 45(1): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201801007.htm

    Zhong L M, Xu M, Wu M L, et al. Development of deep karst under the coupling of multistage flow systems: A case of southern part of the Zhongliang Mountain anticline of the parallel barrier structure in eastern Sichuan[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 45-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201801007.htm
    [13] 季怀松, 罗明明, 褚学伟, 等. 岩溶洼地内涝蓄水量与不同级次裂隙对溶质迁移影响的室内实验与模拟[J]. 地质科技通报, 2020, 39(5): 164-172. doi: 10.19509/j.cnki.dzkq.2020.0520

    Ji H S, Luo M M, Chu X W, et al. Laboratory experiment and simulation of solute transport affected by different grades of fissures and water storage of waterlogging in karst depression[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 164-172(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0520
    [14] 罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. doi: 10.19509/j.cnki.dzkq.2021.0054

    Luo M M, Zhou H, Guo X L, et al. Processes and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0054
    [15] 田清朝, 万军伟, 黄琨, 等. 高家坪隧道岩溶水系统识别及涌水量预测[J]. 安全与环境工程, 2016, 23(5): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201605003.htm

    Tian Q C, Wan J W, Huang K, et al. Karst water system identification and water inflow prediction in Gaojiaping Tunnel[J]. Safety and Environmental Enginerring, 2016, 23(5): 13-19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201605003.htm
    [16] 吴剑疆. 大埋深输水隧洞设计和施工中的关键问题探讨[J]. 水利规划与设计, 2020(4): 120-125. doi: 10.3969/j.issn.1672-2469.2020.04.029

    Wu J J. Discussion on key issues in design and construction of large buried depth water conveyance tunnel[J]. Water Resources Planning and Design, 2020(4): 120-125(in Chinese with English abstract). doi: 10.3969/j.issn.1672-2469.2020.04.029
    [17] Guillaume L, Roland L, Nicolas P, et al. Groundwater-flow characterization in a multilayered karst aquifer on the edge of a sedimentary basin in western France[J]. Journal of Hydrology, 2018, 566: S0022169418307030.
    [18] Qian J, Peng Y, Zhao W, et al. Hydrochemical processes and evolution of karst groundwater in the northeastern Huabei Plain, China[J]. Hydrogeology Journal, 2018, 26: 1721-1729. doi: 10.1007/s10040-018-1805-3
    [19] Marques J, Matos C, Carreira P, et al. Isotopes and geochemistry to assess shallow/thermal groundwater interaction in a karst/fissured-porous environment (Portugal): A review and reinterpretation[J]. Sustainable Water Resources Management, 2019, 5: 1525-1536. doi: 10.1007/s40899-017-0207-3
    [20] 罗明明, 黄荷, 尹德超, 等. 基于水化学和氢氧同位素的峡口隧道涌水来源识别[J]. 水文地质工程地质, 2015, 42(1): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201501003.htm

    Luo M M, Huang H, Yin D C, et al. Source identification of water inrush in the Xiakou tunnel based on hydrochemistry and hydrogen-oxygen isotopes[J]. Hydrogeology & Engineering Geology, 2015, 42(1): 7-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201501003.htm
    [21] Li P, Wu J, Tian R, et al. Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi Coal Mine, Northwest China[J]. Mine Water and the Environment, 2018, 37: 222-237. doi: 10.1007/s10230-017-0507-8
    [22] 武亚遵, 万军伟, 林云. 湖北宜昌西陵峡地区大气降雨氢氧同位素特征分析[J]. 地质科技情报, 2011, 30(3): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201103015.htm

    Wu Y Z, Wan J W, Lin Y. Characteristics of hydrogen and oxygen isotopes for precipitation in Xiling Gorge Region of Yichang, Hubei Province[J]. Geological Science and Technology Information, 2011, 30(3): 93-97(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201103015.htm
    [23] 赵春红, 梁永平, 卢海平, 等. 娘子关泉域岩溶水氢氧同位素特征及影响因素浅析[J]. 地质科技情报, 2018, 37(5): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htm

    Zhao C H, Liang Y P, Lu H P, et al. Hydrogen and oxygen isotopic characteristics and influencing factors of karst water in the Niangziguan spring area[J]. Geological Science and Technology Information, 2018, 37(5): 200-205(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htm
    [24] 黄荷, 罗明明, 陈植华, 等. 香溪河流域大气降水稳定氢氧同位素时空分布特征[J]. 水文地质工程地质, 2016, 43(4): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604008.htm

    Huang H, Luo M M, Chen Z H, et al. The spatial and temporal distribution of stable hydrogen and oxygen isotope of meteoric water in Xiangxi River basin[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 36-42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604008.htm
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  450
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回