留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同地下水流系统模式渗流场和温度场的互相影响

肖巍 孙蓉琳 陈明霞 杨艺娇

肖巍, 孙蓉琳, 陈明霞, 杨艺娇. 不同地下水流系统模式渗流场和温度场的互相影响[J]. 地质科技通报, 2022, 41(1): 251-259. doi: 10.19509/j.cnki.dzkq.2022.0032
引用本文: 肖巍, 孙蓉琳, 陈明霞, 杨艺娇. 不同地下水流系统模式渗流场和温度场的互相影响[J]. 地质科技通报, 2022, 41(1): 251-259. doi: 10.19509/j.cnki.dzkq.2022.0032
Xiao Wei, Sun Ronglin, Chen Mingxia, Yang Yijiao. Interaction between seepage and temperature fields in different groundwater flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 251-259. doi: 10.19509/j.cnki.dzkq.2022.0032
Citation: Xiao Wei, Sun Ronglin, Chen Mingxia, Yang Yijiao. Interaction between seepage and temperature fields in different groundwater flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 251-259. doi: 10.19509/j.cnki.dzkq.2022.0032

不同地下水流系统模式渗流场和温度场的互相影响

doi: 10.19509/j.cnki.dzkq.2022.0032
基金项目: 

国家自然科学基金项目 42172286

国家自然科学基金项目 41772268

详细信息
    作者简介:

    肖巍(1998-), 女, 现正攻读地下水科学与工程专业硕士学位, 主要从事地下水水流系统研究工作。E-mail: xiaowei1570752@163.com

    通讯作者:

    孙蓉琳(1979-), 女, 副教授, 主要从事地下水流系统、水文地质参数反演等研究工作。E-mail: sunronglin@cug.edu.cn

  • 中图分类号: P641

Interaction between seepage and temperature fields in different groundwater flow systems

  • 摘要: 在地热资源丰富的地区,需要研究不同地下水流系统发育模式下渗流场和温度场的互相影响。基于二维潜水盆地多源汇的数值模拟和室内砂箱实验,改变降雨入渗强度,通过砂箱底部加温研究上下边界不同温度差条件下的渗流场和温度场的变化。研究结果表明:①随着降雨入渗强度加大,地下水流速增大,地下水流系统由单一区域系统向复杂的局部+区域、局部+中间+区域多级嵌套系统转化,水流对温度的再分配影响变大;②补给区等温线受下降水流影响下移,排泄区等温线受上升水流影响上抬,其中区域补给区和区域排泄区温度变化幅度最大;③砂箱底部加热后,含水层潜水面下降,地下水流速增大,流线循环深度整体变大,滞留带范围缩小。温度差是地热丰富地区的地下水流系统研究中不可忽视的驱动力。

     

  • 图 1  模型几何形态及网格剖分

    P1~P3.降雨入渗点;S1~S3.排泄点;下同

    Figure 1.  Geometric shape and mesh generation of model

    图 2  区域一级水流模式不同温度差的流网流速分布图(A2方案:ε=432 mm/d)

    Figure 2.  Flow net and velocity distribution of regional groundwater flow system with different temperature difference

    图 3  局部+区域二级水流模式不同温度差的流网流速分布图(A3方案:ε=3 888 mm/d)

    Figure 3.  Flow net and velocity distribution of local-regional groundwater flow system with different temperature difference

    图 4  局部+中间+区域三级水流模式不同温度差的流网流速分布图(A4方案:ε=6 480 mm/d)

    Figure 4.  Flow net and velocity distribution of local-intermediate groundwater flow system with different temperature difference

    图 5  局部+中间+区域三级水流系统模式不同温度差的总水头变化值(A4方案:ε=6 480 mm/d)

    Figure 5.  Variation of hydraulic head of local-intermediate groundwater flow system under different geothermal gradient

    图 6  ΔT=50℃时不同地下水流系统模式中的温度场分布

    a.ε=0 mm/d;b.ε=432 mm/d;c.ε=3 888 mm/d;d.ε=6 480 mm/d

    Figure 6.  Temperature distribution in different groundwater flow systems under 50℃ of temperature difference

    图 7  地下水流系统砂箱结构图

    Figure 7.  Structure diagram of groundwater flow system sandbox

    图 8  砂箱实验中不同水流系统模式中的流线、等水位线及等温线分布图

    Figure 8.  Flow lines, groundwater contour and isotherm distribution of different groundwater flow systems in sandbox experiments

    表  1  数值模拟方案

    Table  1.   Cases of numerical simulation

    方案 ΔT/℃ 降雨强度ε/(mm·d-1) 模拟的水流模式
    A1 0,50 0 无降雨无流动
    A2 0,10,30,50 432 区域一级
    A3 0,10,30,50 3 888 局部+区域二级
    A4 0,10,30,50 6 480 局部+中间+区域
    下载: 导出CSV
  • [1] Tóth J. A theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysical Research, 1963, 68(16): 4795-4812. doi: 10.1029/JZ068i016p04795
    [2] Tóth J. Cross-formational gravity-flow of groundwater: A mechanism of the transport and accumulation of petroleum (The generalized hydraulic theory of petroleum migration)[J]. Problem of Petroleum Migration: AAPG Studies in Geology, 1980, 10: 121-167.
    [3] Tóth J. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations[J]. Hydrogeology Journal, 1999, 7(1): 1-14. doi: 10.1007/s100400050176
    [4] 张人权, 梁杏, 靳孟贵, 等. 当代水文地质学发展趋势与对策[J]. 水文地质工程地质, 2005, 32(1): 51-56. doi: 10.3969/j.issn.1000-3665.2005.01.013

    Zhang R Q, Liang X, Jin M G, et al. The trends in contemporary hydrogeology[J]. Hydrogeology & Engineering Geology, 2005, 32(1): 51-56(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2005.01.013
    [5] 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 第7版. 北京: 地质出版社, 2018.

    Zhang R Q, Liang X, Jin M G, et al. Foundation of hydrogeology[M]. 7 Edition. Beijing: Geological Publishing House, 2018(in Chinese).
    [6] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Scienceand Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [7] 潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. doi: 10.19509/j.cnki.dzkq.2021.0312

    Pan H Y, Zou C J, Bi J B, et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 194-203(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0312
    [8] Jiang X W, Wang X S, Wan L, et al. An analytical study on stagnant points in nested flow systems in basins with depth-decaying hydraulic conductivity[J]. Water Resources Research, 2011, 47(1): 128-139.
    [9] Jiang X W, Wan L, Wang X S, et al. Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow[J]. Geophysical Research Letters, 2009, 36(24): L24402. doi: 10.1029/2009GL041251
    [10] Wang X S, Jiang X W, Wan L, et al. A new analytical solution of topography-driven flow in a drainage basin with depth-dependent anisotropy of permeability[J]. Water Resources Research, 2011, 47(9): 3101-3106.
    [11] 张曼菲, 孙蓉琳, 梁杏. 通量上边界渗透系数随埋深增加指数衰减的地下水流系统[J]. 地质科技情报, 2015, 34(4): 189-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504028.htm

    Zhang M F, Sun R L, Liang X. Effect of decay exponential in hydraulic conductivity with depth on groundwater flow system based on flux upper boundary[J]. Geological Science and Technology Information, 2015, 34(4): 189-193 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504028.htm
    [12] 梁杏, 牛宏, 张人权, 等. 盆地地下水流模式及其转化与控制因素[J]. 地球科学: 中国地质大学学报, 2012, 37(2): 269-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202011.htm

    Liang X, Niu H, Zhang R Q, et al. Basinal groundwater flow patterns and their transformation and dominant factors[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(2): 269-275 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202011.htm
    [13] Cardenas M B, Jiang X W. Groundwater flow, transport, and residence times through topography-driven basins with exponentially decreasing permeability and porosity[J]. Water Resources Research, 2010, 46(11): 3-23.
    [14] 刘彦, 梁杏, 权董杰, 等. 改变入渗强度的地下水流模式实验[J]. 地学前缘, 2010, 17(6): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006015.htm

    Liu Y, Liang X, Dong Q J, et al. Experiments of groundwater flow patterns under changes of infiltration intensity[J]. Earth Science Frontiers, 2010, 17(6): 111-116 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006015.htm
    [15] Liang X, Liu Y, Jin M, et al. Direct observation of complex Tóthian groundwater flow systems in the laboratory[J]. Hydrological Processes, 2010, 24(24): 3568-3573. doi: 10.1002/hyp.7758
    [16] 董维红, 苏小四, 侯光才, 等. 鄂尔多斯白垩系地下水盆地地下水水化学类型的分布规律[J]. 吉林大学学报: 地球科学版, 2007, 37(2): 288-292. doi: 10.3321/j.issn:1671-5489.2007.02.030

    Dong W H, Su X S, Hou G C, et al. Distribution law of groundwater hydrochemical type in the Ordos Cretaceous Artesian basin[J]. Journal of Jilin University: Earth Science Edition, 2007, 37(2): 288-292(in Chinese with English abstract). doi: 10.3321/j.issn:1671-5489.2007.02.030
    [17] 蒋小伟. 盆地含水系统与地下水流动系统特征[D]. 北京: 中国地质大学(北京), 2011.

    Jiang X W. A study on aquifer systems and groundwater flow systems in drainage basins[D]. Beijing: China University of Geosciences (Beijing), 2007 (in Chinese with English abstract).
    [18] 曹国亮. 华北平原地下水系统变化规律研究[D]. 北京: 中国地质大学(北京), 2013.

    Cao G L. Evalution of groundwater system in north China plain using groundwater modeling[D]. Beijing: China University of Geosciences (Beijing), 2007 (in Chinese with English abstract).
    [19] Garven G, Freeze R A. Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits; 1, Mathematical and numerical model[J]. American Journal of Science, 1984, 284(10): 1085-1124. doi: 10.2475/ajs.284.10.1085
    [20] Saar M O. Review: Geothermal heat as a tracer of large-scale groundwater flow and as a means to determine permeability fields[J]. Hydrogeology Journal, 2011, 19(1): 31-52. doi: 10.1007/s10040-010-0657-2
    [21] 赵敬波. 地下热水流动与热量运移的三维非稳定流数值模拟研究[D]. 北京: 中国地质大学(北京), 2015.

    Zhao J B. 3-Dimensional numerical modeling of unsteady thermal groundwater flow and heat transport[D]. Beijing: China University of Geosciences (Beijing), 2015 (in Chinese with English abstract).
    [22] 杨伟, 吕亚飞, 张树光. 底部加热多孔介质内传热数值研究[J]. 四川大学学报: 自然科学版, 2014, 2: 340-344. doi: 10.3969/j.issn.0490-6756.2014.02.022

    Yang W, Lv Y F, Zhang S G. Numerical analysis of heat transmission in porous medium with bottom heating[J]. Journal of Sichuan University: Natural Science Edition, 2014, 2 : 340-344 (in Chinese with English abstract). doi: 10.3969/j.issn.0490-6756.2014.02.022
    [23] Vitel M, Rouabhi A, Tijani M, et al. Modeling heat and mass transfer during ground freezing subjected to high seepage velocities[J]. Computers and Geotechnics, 2016, 73: 1-15. doi: 10.1016/j.compgeo.2015.11.014
    [24] Jiang X W, Wan L, Cardenas M B, et al. Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying hydraulic conductivity and porosity[J]. Geophysical Research Letters, 2010, 37(5): L05403.
    [25] 安然. 地下水流与气流、热流的典型耦合问题及解耦条件研究[D]. 北京: 中国地质大学(北京), 2015.

    An R. Research on typical coupling problems and the decoupling condition for groundwater flow linked with air flow and thermal flow[D]. Beijing: China University of Geosciences (Beijing), 2015 (in Chinese with English abstract).
    [26] Sorey M L. Numerical modeling of liquid geothermal systems[C]. [S. l.]: Center for integrated data analytics Wisconsin Science Center, 1979.
    [27] Huyakorn P, Pinder G F. A pressure-enthalpy finite element model for simulating hydrothermal reservoirs[J]. Mathematics and Computers in Simulation, 1978, 20(3): 167-178. doi: 10.1016/0378-4754(78)90066-6
    [28] 姜晓. 中国大陆地区的浅层地温分布及其与大地热流关系的初步研究[D]. 北京: 中国科学院研究生院, 2010.

    Jiang X. A preliminary study on the shallow geothermal distribution and its relationship with the terrestrial heat flow in mainland China[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2010 (in Chinese with English abstract).
    [29] An R, Jiang X W, Wang J Z, et al. A theoretical analysis of basin-scale groundwater temperature distribution[J]. Hydrogeology Journal, 2014, 23(2): 397-404.
    [30] 牛宏. 地下水流系统控制因素及演变规律研究[D]. 武汉: 中国地质大学(武汉), 2016.

    Niu H. Study on control factors and evolution law of groundwater flow systems: A case study of Hebei Plain[D]. Wuhan: China University of Geosciences (Wuhan), 2016 (in Chinese with English abstract).
    [31] 王家乐. 济南岩溶水系统多级次循环模式分析及识别方法研究[D]. 武汉: 中国地质大学(武汉), 2016.

    Wang J L. Analysis and identification of hierarchical groundwater flow system in Jinan[D]. Wuhan: China University of Geosciences(Wuhan), 2016 (in Chinese with English abstract).
    [32] 梁杏, 沈仲智, 刘宇, 等. 一种多级次地下水流系统演示仪: CN2008200667265[P]. 2008.

    Liang X, Shen Z Z, Liu Y, et al. A multi-level sub-groundwater flow system demonstrator: CN2008200667265[P]. 2008(in Chinese).
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  624
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回