留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海上高-特高含水期稠油油藏提高采收率实验研究

张伟 戴建文 王亚会 涂乙

张伟, 戴建文, 王亚会, 涂乙. 海上高-特高含水期稠油油藏提高采收率实验研究[J]. 地质科技通报, 2022, 41(3): 193-199. doi: 10.19509/j.cnki.dzkq.2022.0065
引用本文: 张伟, 戴建文, 王亚会, 涂乙. 海上高-特高含水期稠油油藏提高采收率实验研究[J]. 地质科技通报, 2022, 41(3): 193-199. doi: 10.19509/j.cnki.dzkq.2022.0065
Zhang Wei, Dai Jianwen, Wang Yahui, Tu Yi. Experimental study on EOR of offshore heavy oil reservoir in high-ultra-high water cut stage[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 193-199. doi: 10.19509/j.cnki.dzkq.2022.0065
Citation: Zhang Wei, Dai Jianwen, Wang Yahui, Tu Yi. Experimental study on EOR of offshore heavy oil reservoir in high-ultra-high water cut stage[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 193-199. doi: 10.19509/j.cnki.dzkq.2022.0065

海上高-特高含水期稠油油藏提高采收率实验研究

doi: 10.19509/j.cnki.dzkq.2022.0065
基金项目: 

中国海洋石油总公司"十三五"科技重大项目 CNOOC-KJ135ZDXM22LTD02SZ2016

详细信息
    作者简介:

    张伟(1973—),男,高级工程师,主要从事海洋油气田开发研究及管理工作。E-mail: zhangweil@cnooc.com.cn

    通讯作者:

    涂乙(1986—),男,工程师,主要从事开发地质研究、开发项目实施等工作。E-mail: tuyi2@cnooc.com.cn

  • 中图分类号: TE32+7

Experimental study on EOR of offshore heavy oil reservoir in high-ultra-high water cut stage

  • 摘要:

    为了探索高-特高含水期稠油油藏不同提液方式下提高剩余油采出程度的机理, 设计不同提液方式、不同原油黏度下的海相砂岩稠油油藏驱替实验, 采用在室内搭建长岩心物理模拟实验, 研究高含水期、特高含水期时不同提液方式、原油黏度等因素对提高采收率的影响, 结合核磁共振成像和T2图谱研究不同注水方式下剩余油分布。研究表明, 提液相比于恒定低速驱, 可提高11%左右的采出程度; 以驱替至含水率大于99%作为驱替结束条件, 高含水期油藏通过多次控幅提液采出程度最高; 岩心低速水驱至特高含水期后, 岩心核磁共振图像饱和度明显降低, 随着驱替的进行, 孔隙度分量逐渐降低, 即剩余油逐渐减少; 高含水期多次提液对不同孔径动用程度比一次大幅提液效果好, 微孔、小孔和中孔均有不同程度波及, 整体采出程度提高17.01%, 其中, 中小孔导致采出程度提高13.31%, 占提高幅度的78.2%;特高含水期, 多次提液比一次大幅提液原油采出程度提高9.2%, 其中中孔采出程度的提高作出主要贡献, 占提高幅度的97.2%, 微小孔波及程度较小。研究成果可为高-特高含水期稠油油藏提高采收率提供技术支持。

     

  • 图 1  一维驱油和核磁共振实验示意图

    Figure 1.  Schematic diagram of one-dimensional oil flooding and nuclear magnetic resonance experiments

    图 2  不同提液组合采出程度随时间变化关系曲线

    Figure 2.  Variation curve of recovery degree with time for different extraction combinations

    图 3  不同原油黏度和不同提液组合下采出程度与提高幅度值

    Figure 3.  Recovery degree and increase amplitude under different crude oil viscosities and different extraction combinations

    图 4  一次大幅提液核磁共振成像

    Figure 4.  Nuclear magnetic resonance imaging of one large extraction

    图 5  多次控幅提液核磁共振成像

    Figure 5.  Multiple amplitude controlled extraction NMR imaging

    图 6  核磁共振T2弛豫谱测试结构图

    Figure 6.  Structure diagram of the nuclear magnetic resonance T2 relaxation spectrum test

    图 7  不同孔径提液提高核磁孔隙分量柱状图

    Figure 7.  Histogram of increasing NMR pore components by different pore size extracts

    表  1  长岩心水驱油提液提高洗油效率实验设计

    Table  1.   Experimental design for improving oil washing efficiency by water-driven oil extraction from long rock cores

    长岩心特征 原油黏度/
    (mPa·s)
    渗透率级别/
    ×10-3 μm2
    含水阶段 提液方式 提液措施
    总长度
    40~55 cm;
    直径
    2.40 cm左右
    50,100,200 2 500 特高含水期 一次大幅提液 0.1 mL/min至含水>90%+一次大幅提液至1.5 mL/min至驱替结束
    高含水期 0.1 mL/min至含水80%~90%+一次大幅提液至1.5 mL/min至驱替结束
    特高含水期 多次控幅提液 0.1 mL/min至含水95%+四级控幅提液至0.2, 0.4, 0.8, 1.5 mL/min至驱替结束
    高含水期 0.1 mL/min至含水80%~90%+四级控幅提液至0.2, 0.4, 0.8, 1.5 mL/min至驱替结束
    下载: 导出CSV

    表  2  不同提液制度和采出程度统计

    Table  2.   Statistics of different extraction systems and recovery degree

    岩心类别 渗透率级别/10-3 μm2 提液方式 提液时含水率/% 最终采出程度/% 含水率99%所需时间/min 恒速驱采出程度/%
    长岩心 2 500 高一次大幅 86.67 70.76 420 61.49
    特高一次大幅 91.67 72.61 450 60.36
    高多次控幅 85.00, 96.11, 98.00, 99.38 73.31 790 61.49
    特高多次控幅 90.25, 96.67, 98., 99.70 72.83 810 60.03
    下载: 导出CSV

    表  3  T2弛豫时间与孔隙半径关系表

    Table  3.   Relationship between T2 relaxation time and pore radius

    T2/ms 孔隙类型 孔隙半径/μm
    ≤1 微孔 ≤2
    1~10 小孔 2~10
    10~100 中孔 10~20
    100~1 000 大孔 20~200
    下载: 导出CSV
  • [1] 李传亮, 王凤兰, 杜庆龙, 等. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5): 163-171. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202105016.htm

    Li C L, Wang F L, Du Q L, et al. Water displacement rules of sandstone reservoirs at extra-high water-cut stage[J]. Lithologic Reservoirs, 2021, 33(5): 163-171(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202105016.htm
    [2] Modaresghazani J, Moore R, Mehta S, et al. Investigation of the relative permeabilities in two-phase flow of heavy oil/water and three-phase flow of heavy oil/water/gas systems[J]. Journal of Petroleum Science and Engineering, 2019, 172: 681-689. doi: 10.1016/j.petrol.2018.08.053
    [3] Permadi P, Gustiawan E, Abdassah D. Water cresting and oil recovery by horizontal wells in the presence of impermeable streaks[J]. SPE, 1996: 35440.
    [4] Dou H, Guan C Z, Lian S J. The experimental studies of physical simulation of bottom water reservoirs with barrier and permeable interbred on horizontal well[J]. SPE, 1999: 55995.
    [5] 刘佳, 程林松, 黄世军. 底水油藏水平井开发物理模拟实验研究[J]. 石油钻探技术, 2013, 41(1): 87-92. doi: 10.3969/j.issn.1001-0890.2013.01.017

    Liu J, Cheng L S, Huang S J. Physical modeling and experiment for horizontal wells in bottom water reservoir[J]. Petroleum Drilling Techniques, 2013, 41(1): 87-92(in Chinese with English abstract). doi: 10.3969/j.issn.1001-0890.2013.01.017
    [6] 张新旺, 郭和坤, 沈瑞, 等. 基于核磁共振技术水驱油剩余油分布评价[J]. 实验室研究与探索, 2017, 36(9): 17-21. doi: 10.3969/j.issn.1006-7167.2017.09.005

    Zhang X W, Guo H K, Shen R, et al. Microscopic experimental study on water displacement oil based on nuclear magnetic resonance technology[J]. Research and Exploration in Laboratory, 2017, 36(9): 17-21(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7167.2017.09.005
    [7] 张吉磊, 罗宪波, 张运来, 等. 提高稠油底水油藏转注井注水效率研究[J]. 岩性油气藏, 2019, 31(4): 141-148. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201904015.htm

    Zhang J L, Luo X B, Zhang Y L, et al. Improving water injection efficiency of transfer injection well in heavy oil bottom water reservoir[J]. Lithologic Reservoirs, 2019, 31(4): 141-148(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201904015.htm
    [8] 张伟, 曹仁义, 罗东红, 等. 南海珠江口盆地海相砂岩油藏高倍数水驱驱替特征[J]. 油气地质与采收率, 2018, 25(2): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201802010.htm

    Zhang W, Cao R Y, Luo D H, et al. Displacement characteristics of high-multiple water drive in marine sandstone reservoirs in the Pearl River Mouth Basin, South China Sea[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(2): 64-71(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201802010.htm
    [9] 张运来, 陈建波, 周海燕, 等. 海上底水油藏水平井水驱波及系数定量表征[J]. 岩性油气藏, 2020, 32(6): 146-153. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202006014.htm

    Zhang Y L, Chen J B, Zhou H Y, et al. Quantitative characterization of sweep coefficient of water drive in horizontal well for offshore bottom water reservoir[J]. Lithologic Reservoirs, 2020, 32(6): 146-153(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202006014.htm
    [10] 许胜洋. 水驱砂岩油藏提液改善开发效果机理研究[D]. 河北秦皇岛: 燕山大学, 2011.

    Xu S Y. Study on mechanism of using enhanced liquid to improve development effect in water flooding sandstone reservoirs[D]. Qinghuangdao Hebei: Yanshan University, 2011(in Chinese with English abstract).
    [11] 欧阳传湘, 崔连云, 欧阳静芸, 等. 底水油藏中高含水期提液可行性研究[J]. 石油地质与工程, 2009, 23(2): 113-115. doi: 10.3969/j.issn.1673-8217.2009.02.036

    Ouyang C X, Cui L Y, Ouyang J Y, et al. Feasibility study on liquid extraction in middle and high water cut stage of bottom water reservoir[J]. Petroleum Geology and Engineering, 2009, 23(2): 113-115(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8217.2009.02.036
    [12] 欧映辰, 杨志. 番禺4-2油田调整井出砂预测与防砂设计研究[J]. 广东化工, 2018, 45(16): 171-172. doi: 10.3969/j.issn.1007-1865.2018.16.076

    Ou Y C, Yang Z. Sand prediction and sand control design for adjustment wells in Panyu 4-2 Oilfield[J]. Guangdong Chemical Industry, 2018, 45(16): 171-172(in Chinese with English abstract). doi: 10.3969/j.issn.1007-1865.2018.16.076
    [13] 王伟, 宋渊娟, 黄静, 等. 利用高压压汞实验研究致密砂岩孔喉结构分形特征[J]. 地质科技通报, 2021, 40(4): 22-30, 48. doi: 10.19509/j.cnki.dzkq.2021.0402

    Wang W, Song Y J, Huang J, et al. Fractal characteristics of pore-throat structure in tight sandstones using high-pressure mercury intrusion porosimetry[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 22-30, 48(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0402
    [14] 张莉, 岳湘安, 王友启. 特高含水后期提高采收率物理模拟实验[J]. 石油钻采工艺, 2020, 42(3): 363-368. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC202003021.htm

    Zhang L, Yue X A, Wang Y Q. Physical simulation experimental study on the enhanced oil recovery in the late stage of ultra-high water cut[J]. Oil Drilling & Production Technology, 2020, 42(3): 363-368(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC202003021.htm
    [15] 刘彦锋, 张文彪, 段太忠等. 深度学习油气藏地质建模研究进展[J]. 地质科技通报, 2021, 40(4): 235-241. doi: 10.19509/j.cnki.dzkq.2021.0417

    Liu Y F, Zhang W B, Duan T Z, et al. Progress of deep learning in oil and gas reservoir geological modeling[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 235-241(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0417
    [16] 朱伟军. 低渗透油藏中高含水期剩余油分布及挖潜研究[D]. 西安: 西安石油大学, 2013.

    Zhu W J. A study of low permeability reservoir remaining oil distribution and potential tapping in medium and high water cut period[D]. Xi'an: Xi'an Shiyou University, 2013(in Chinese with English abstract).
    [17] 余保海, 李俊, 黄琛. 低渗砂岩油藏高含水期提液可行性研究[J]. 化工管理, 2015, 377(18): 12-13. doi: 10.3969/j.issn.1008-4800.2015.18.010

    Yu B H, Li J, Huang C. Feasibility study on liquid extraction in high water cut stage of low permeability sandstone reservoir[J]. Chemical Management, 2015, 377(18): 12-13(in Chinese with English abstract). doi: 10.3969/j.issn.1008-4800.2015.18.010
    [18] 刘晨, 张金庆, 周文胜, 等. 海上高含水油田群液量优化模型的建立及应用[J]. 中国海上油气, 2016, 28(6): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201606008.htm

    Liu C, Zhang J Q, Zhou W S, et al. Modeling of liquid production optimization in high water cut offshore oilfield group and its application[J]. China Offshore Oil and Gas, 2016, 28(6): 46-52(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201606008.htm
    [19] 李宜强, 张津, 潘登, 等. 高含水期微观剩余油赋存规律: 以大港油田小集区块和港西区块为例[J]. 新疆石油地质, 2021, 42(4): 444-449. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202104008.htm

    Li Y Q, Zhang J, Pan D, et al. Occurrence laws of microscopic remaining oil in high water-cut reservoirs: A case study on blocks Xiaoji and Gangxi in Dagang Oilfield[J]. Xinjiang Petroleum Geology, 2021, 42(4): 444-449(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202104008.htm
    [20] 曾羽佳, 欧阳传湘, 曾庆伟, 等. 超低界面张力体系对低渗岩心非线性渗流规律的影响[J]. 地质科技通报, 2021, 40(5): 307-315. doi: 10.19509/j.cnki.dzkq.2021.0027

    Zeng Y J, Ouyang C X, Zeng Q W, et al. Influence of ultra-low interfacial tension system on nonlinear seepage law of low permeability core[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 307-315(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0027
    [21] 周凤军, 陈建波, 葛丽珍, 等. 锦州油田中高含水期聚合物驱特征分析及改善措施[J]. 石油地质与工程, 2014, 28(1): 84-86, 90. doi: 10.3969/j.issn.1673-8217.2014.01.025

    Zhou F J, Chen J B, Ge L J, et al. Characteristics analysis and improvement measures of polymer flooding in middle and high water cut stage of Jinzhou Oilfield[J]. Petroleum Geology and Engineering, 2014, 28(1): 84-86, 90(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8217.2014.01.025
    [22] Clementz D M. Clay stabilization in sandstones through adsorption of petroleum heavy ends[J]. Journal of Petroleum Technology, 1977, 29(9): 1061-1066. doi: 10.2118/6217-PA
    [23] Qi Z, Wang Y, He H, et al. Wettability alteration of the quartz surface in the presence of metal cations[J]. Energy & Fuels, 2013, 27(12): 54-59.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  16
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-24

目录

    /

    返回文章
    返回