Mobilization of fluoride in sediments at high fluoride area enhanced by microorganisms
-
摘要:
氟是自然界广泛分布的非金属元素,也是人体必须的微量元素之一。环境微生物作为自然界中物质迁移的主动力之一,积极地参与着多种元素的水文生物地球化学循环。研究微生物参与下沉积物中氟的释出行为,对深入理解环境氟迁移行为具有重要意义。以山西运城高氟区沉积物样品为代表,采用野外沉积物调查采集、室内环境地球化学分析和微宇宙培养实验等研究手段,从环境生物地球化学作用的角度探讨了微生物介导下沉积物中氟的迁移释出行为。研究证明,高氟区沉积物总氟质量分数介于206.2~781.0 mg/kg之间,主要含氟矿物为长石、云母、方解石、绿泥石、角闪石等。培养条件下,溶液中的氟质量浓度与微生物生长曲线呈现良好的一致性;在培养初期,溶液中的氟质量浓度迅速上升,而后逐渐缓和,14 d后呈下降趋势。其中,黏土类沉积物的释氟量较大,砂土类沉积物释氟量较小。有、无碳源对照培养说明,沉积物中一定量的碳源可被微生物代谢利用,但碳源不是影响微生物在此环境中作用的主要因素。研究证明,原生微生物代谢活动可以显著促进沉积物中氟的迁移释出,微生物作用下不同岩性沉积物中氟的释出特征也有显著的差异,本研究工作有助于进一步丰富环境氟循环的理论认识。
Abstract:As one of the most widely distributed element in nature, fluorineis essential for human body health. Microbes play a key role in the biogeochemical cycle of various elements in natural environment. This study focus on the mobilization of fluorine from sediment mediated by microorganism activities, using samples from Yuncheng Basin, Shanxi Province, an area with high fluorine-content groundwater. Our study suggest that fluoride content in sediments range between 206.2-781.0 mg/kg with feldspar, mica, calcite, chlorite and amphibole as the major fluoride bearing minerals. The fluorine concentration in the culturesolution showed a good consistency with the growth curve of microorganisms.The fluorine concentration increased rapidly at the early stage of culture, then gradually eased, and showed a downward trend after 14 days.Among them, clay type sediments release more fluoride than sand type sediments.These results indicate that the metabolic activities of the native microorganisms can significantly promote the release of fluorine from sediments. It is also observed that the release characteristics of fluorine is lithology dependent.The research of this paper will be helpful for the full understand of the cycle of fluorine in natural environment.
-
Key words:
- sediment /
- fluorine /
- mobilization /
- microorganism /
- high fluoride groundwater
-
表 1 普通液体培养基成分表
Table 1. Ingredients of common liquid medium
培养基成分 质量浓度/(g·L-1) 培养基成分 质量浓度或浓度 (NH4)2SO4 0.24 CoCl2·6H2O 0.17 mg/L MgSO4·7H2O 0.12 CuCl2·2H2O 0.10 mg/L CaCl2·2H2O 0.20 MnCl2·4H2O 0.10 mg/L NaCl 0.10 ZnCl2 0.22 mg/L KH2PO4 0.05 酵母提取物 0.50 g/L K2HPO4 0.05 乳酸钠 20 mmol/L H3BO3 0.000 6 (pH≈7.0) 表 2 沉积物样品基本物化特征统计表
Table 2. Basic physical and chemical characteristics of sediment samples
编号 岩性 深度/m 总氟wB/(mg·kg-1) pH 含水率/% QJ-W-02 粉砂 9.2~9.4 292.6 8.47 11.64 QJ-W-04 细砂 18.4~18.5 373.2 9.13 12.08 QJ-W-06 砂质黏土 25.3~25.5 781.0 9.96 21.41 QJ-W-10 粉质黏土 32.0~32.2 618.2 9.48 23.59 QJ-W-13 细砂 41.8~42.0 206.2 9.58 8.42 表 3 沉积物培养液中特征指标Pearson相关系数表
Table 3. Pearson correlation coefficient of characteristic indexes in sediment culture medium
项目 编号 ρ(F)-pH ρ(F)-BM pH-BM 沉积物未灭菌 02-3 0.750 0.714 0.522 04-3 0.774* 0.477 0.666 06-3 0.593 0.659 0.490 10-3 0.651 0.528 0.424 13-3 0.101 0.543 0.655 全部 0.477* 0.469* 0.551* 沉积物灭菌接种土壤菌液 02-2 0.509 -0.258 -0.516 04-3 0.233 0.460 -0.402 06-2 0.090 -0.764* -0.456 10-2 0.237 0.134 -0.133 13-2 0.658 0.276 -0.263 全部 0.129 -0.015 -0.289 注:BM代表微生物数量;*表示置信区间在0.05水平(双侧)上显著相关 -
[1] Anderson J A, Antich P P, Prior J O. Stimulated positron emission analysis techniques for the quantitative assessment of fluorine in bone[J]. IEEE Transactions on Nuclear Science, 1991, 38(2): 713-718. doi: 10.1109/23.289379 [2] Gao X B, Wang Y X, Li Y L, et al. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng Basin, northern China[J]. Environmental Geology, 2007, 53: 795-803. doi: 10.1007/s00254-007-0692-z [3] 王滨滨, 郑宝山, 廖昂. 氟在土壤中的富集与淋滤[J]. 矿物学报, 2010, 30(4): 496-500. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201004016.htmWang B B, Zheng B S, Liao A. Fluoride enrichment and leaching in the soil: A review[J]. Acta Mineralogica Sinica, 2010, 30(4): 496-500(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201004016.htm [4] Li C C, Gao X B, Wang Y X. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China[J]. Science of the Total Environment, 2015, 508: 155-165. doi: 10.1016/j.scitotenv.2014.11.045 [5] 任福弘, 曾溅辉, 刘文生, 等. 高氟地下水的水文化学环境及氟的赋存形式与地氟病患病率的关系: 以华北平原为例[J]. 地球学报, 1996, 17(1): 85-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB601.008.htmRen H F, Zeng J H, Liu W S, et al. Hydrogeochemical environment of high fluorine groundwater and the relation between the speciation of fluorine and the diseased ratio of endemic fluorosis: A case study of the North China Plain[J]. Acta Geoscientica Sinica, 1996, 17(1): 85-96(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB601.008.htm [6] 刘东生, 陈庆沐, 余志成, 等. 我国地方性氟病的地球化学问题[J]. 地球化学, 1980, 9(1): 13-22. doi: 10.3321/j.issn:0379-1726.1980.01.002Liu D S, Chen Q M, Yu Z C, et al. Geochemical environment problems concerning the endemic fluorine disease in China[J]. Geochimica, 1980, 9(1): 13-22(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1980.01.002 [7] 江欣悦, 李静, 郭林, 等. 豫北平原浅层地下水化学特征与成因机制[J]. 地质科技通报, 2021, 40(5): 290-300. doi: 10.19509/j.cnki.dzkq.2021.0511Jiang X Y, Li J, Guo L, et al. Chemical characteristics and formation mechanism of shallow groundwater in the northern Henan Plain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 290-300(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0511 [8] Huang P M, Wang M K. Soil mineral-organic matter-microbe interactions: Impacts on biogeochemical processes and biodiversity in soils[J]. Pedobiologia, 2005, 49(6): 609-635. doi: 10.1016/j.pedobi.2005.06.006 [9] 刘金辉, 吴为荣, 刘亚洁, 等. 浸铀过程中氧化硫硫杆菌的耐氟性试验研究[J]. 金属矿山, 2009, 39(5): 52-52, 66. doi: 10.3321/j.issn:1001-1250.2009.05.013Liu J H, Wu W R, Liu Y J, et al. Study on the fluorine resistance of thiobacillus thiooxidans in uranium leaching[J]. Metal Mine, 2009, 39(5): 50-52, 66(in Chinese with English abstract). doi: 10.3321/j.issn:1001-1250.2009.05.013 [10] Zhang X, Gao X B, Li C C, et al. Fluoride contributes to the shaping the microbial community in high fluoride groundwater in Qiji County, Yuncheng City, China[J]. Scientific Report, 2019, 9: 14488. doi: 10.1038/s41598-019-50914-6 [11] Zhou J P, Wang H M, Charles A C, et al. Dissolution of fluorapatite by pseudomonas fluorescens P35 resulting in fluorine release[J]. Geomicrobiology Journal, 2017, 34(5): 421-433. [12] Gao X B, Luo W T, Luo X S, et al. Indigenous microbes induced fluoride release from aquifer sediments[J]. Environmental Pollution, 2019, 252: 580-590. doi: 10.1016/j.envpol.2019.05.118 [13] Li C C, Gao X B, Liu Y S, et al. Impact of anthropogenic activities on the enrichment of fluoride and salinity in groundwater in the Yuncheng Basin constrained by Cl/Br ratio, δ18O, δ2H, δ13C and δ7 Li isotopes[J]. Journal of Hydrology, 2019, 579: 124211. doi: 10.1016/j.jhydrol.2019.124211 [14] Li D N, Gao X B, Wang Y X. et al. Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China[J]. Environmental Pollution, 2018, 237: 430-441. doi: 10.1016/j.envpol.2018.02.072 [15] Areco M M, Hanela S, Duran J, et al. Biosorption of Cu(Ⅱ), Zn(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation[J]. Journal of Hazardous Materials, 2012, 213: 123-132. [16] Dikshit R, Jain A, Dey A, et al. Microbially induced calcite precipitation using Bacillus velezensis with guar gum[J]. PloS One, 2020, 15(8): e0236745. doi: 10.1371/journal.pone.0236745 [17] 宋新华. 氟在花岗岩类岩石中的性状[J]. 地质科技情报, 1985, 4(4): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ198504008.htmSong X H. Properties of fluorine in granitoid rocks[J]. Geological Science and Technology Information, 1985, 4(4): 28-35(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ198504008.htm [18] Harrington L F, Cooper E M, Vasudevan D. Fluoride sorption and associated aluminum release in variable charge soils[J]. Journal of Colloid and Interface Science, 2003, 267(2): 302-313. doi: 10.1016/S0021-9797(03)00609-X [19] Luo W T, Gao X B, Zhang X. Geochemical processes controlling the groundwater chemistry and fluoride contamination in the Yuncheng Basin, China: An area with complex hydrogeochemical conditions[J]. PloS One, 2018, 13(7): e0199082. doi: 10.1371/journal.pone.0199082 [20] 潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. doi: 10.19509/j.cnki.dzkq.2021.0312Pan H Y, Zou C J, Bi J B, et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 194-203(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0312 [21] 余浩文, 刘昭, 荣峰, 等. 西藏错那地热田水化学特征与物源机制[J]. 地质科技通报, 2021, 40(3): 34-44. doi: 10.19509/j.cnki.dzkq.2021.0318Yu H W, Liu Z, Rong F, et al. Characteristics and source mechanism of geothermal field in Cuona, Tibet[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 34-44(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0318 -