Influence of different rock-soil fabrics on carbonate weathering carbon sink flux in karst regions
-
摘要:
我国南方喀斯特地区岩石裸露率高、土层浅薄且分布不均,这种特殊的岩土组构如何影响水文过程对于准确估算岩溶碳通量具有重要意义。水化学径流法是计算流域尺度岩溶碳通量的常用方法,其中流域面积和流量作为2个重要参数在喀斯特地区往往难以准确获取。在普定喀斯特生态系统观测研究站设计了一组岩土比(1:1和4:1)和一组土层厚度(5,20,100 cm)共计5种岩土组构的模拟试验场。通过一个完整水文年的流量和水化学监测,定量研究了岩石裸露率和土层厚度对水文过程以及岩溶碳通量的影响。研究结果表明,5个模拟试验场岩溶碳通量平均值为(17±3) gC/m2/a,受渗漏量控制,雨季(5-10月)约占95%;岩石裸露率(2组岩土组构之间)对渗漏量的影响可达14%,且随着岩石裸露率增加,入渗系数也相应增加;土层厚度对渗漏量的影响仅在1%~2%之间。此外,对8个野外流域观测数据的分析发现,入渗系数与岩溶碳通量的相关性最为显著,说明入渗系数是喀斯特地区不同岩土组构地质背景影响和控制岩溶碳通量的主要因素,同时这种影响可能随降雨量变化而变化,即入渗系数并非常数。
Abstract:The karst areas in southern China are characterized by a high rock exposure ratio and shallow and unevenly distributed soil layers.How this special geotechnical fabric affects the hydrological process is of great significance for the accurate estimation of carbonate weathering carbon sink flux.Hydrochemical runoff is a commonly used method for calculating carbonate weathering carbon sink flux at the watershed scale, and basin area and discharge, as two important parameters, are often difficult to accurately obtain in karst areas.To overcome this problem, we designed a rock-soil fabric simulation test site, including different rock-soil ratios(1:1 and 4:1) and soil thicknesses(5, 20, 100 cm) at the Puding Karst Ecosystem Research Station, Chinese Academy Sciences.The effects of rock exposure and soil layer thickness on hydrological processes and carbonate weathering carbon sink flux were quantitatively studied by monitoring the flow and hydrochemistry during a hydrological year.The results show that the average carbonate weathering carbon sink flux is 17±3 gC/m2/a, which is controlled by the leakage amount and accounts for 95% in the rainy season(from May to October); The influence of the rock exposure ratio(between the two groups of rock fabric) on the leakage amount is up to 14%, and the infiltration coefficient increases with increaseing of rock exposure ratio; The effect of the soil layer thickness on seepage is only 1%-2%.In addition, it is found that the correlation between the infiltration coefficient and carbonate weathering carbon sink flux is the most significant by analysis the observed data of 8 field basins from previous studies.The infiltration coefficient is the main factor affecting and controlling the carbonate weathering carbon sink flux, which is due to the geological background of different rock and soil fabrics in the karst area.At the same time, the influence may change with the rainfall variation, that is, the infiltration coefficient is not constant.
-
表 1 不同岩土组构模拟试验场水化学参数均值
Table 1. Hydrochemical parameters under different rock-soil fabrics
1# 2# 3# 4# 5# pH 8.24 8.20 8.38 8.46 8.36 T/℃ 20.46 20.32 20.26 20.16 20.23 ρ(TDS)/(mg·L-1) 254 239 255 208 173 ρ(Ca2+)/(mg·L-1) 76 74 50 42 58 ρ(Mg2+)/(mg·L-1) 21 21 41 31 8 ρ(HCO3-)/(mg·L-1) 188 231 259 232 173 表 2 不同岩土组构模拟试验场岩溶碳通量大小
Table 2. Carbonate weathering carbon sink flux of different rock-soil fabrics
参数 1# 2# 3# 4# 5# 雨季 Q/mm 889.00 875.00 765.00 775.00 771.00 DIC/(mmol·L-1) 2.92 3.59 4.01 3.59 2.75 CCSF/(gC·m-2·a-1) 15.60 18.90 18.40 16.70 12.70 旱季 Q/mm 28.00 32.00 25.00 32.00 21.00 DIC/(mmol·L-1) 3.05 3.68 4.23 3.85 2.89 CCSF/(gC·m-2·a-1) 0.50 0.70 0.60 0.70 0.40 全年 Q/mm 917.00 907.00 790.00 807.00 792.00 DIC/(mmol·L-1) 2.97 3.63 4.09 3.69 2.82 CCSF/(gC·m-2·a-1) 6.30 19.80 19.40 17.90 13.40 表 3 岩土组构对入渗系数的影响
Table 3. Influence of rock-soil fabric on infiltration coefficient
表 4 我国南方喀斯特地区8个野外流域数据汇总
Table 4. Data summary of eight karst basins in South China karst region
流域名称 P/(m·a-1) T/℃ DIC/(mg·L-1) RD/(m·a-1) α CCSF/(gC·m-2·a-1) 土地利用 地质背景 参考文献 寨底 1.67 19 213 0.90 0.54 19 灌木、草丛存在石漠化 灰岩(90%)、白云质灰岩、白云岩、碎屑岩 文献[11] 大安 1.57 20 263 0.85 0.54 22 阔叶林、灌木、草丛 灰岩、白云质灰岩、页岩夹砂岩 青木关 1.25 18 327 0.85 0.68 27 针叶林、阔叶林 砂页岩、白云质灰岩、白云岩、灰岩、泥页岩 关村 1.75 20 262 0.48 0.27 12 灌木 灰岩、白云岩夹层 文献[23] 木美 1.41 17 256 1.35 0.96 34 石漠化 灰岩、白云岩 皇后 1.43 15 183 0.53 0.37 9 森林、农田 灰岩 文献[24] 后寨 1.23 15 231 0.39 0.32 11 农田、森林、裸岩 灰岩、白云岩、石膏夹层 1.31 262 0.38 0.29 10 本研究 板寨 1.57 118 229 0.37 0.24 8 原始森林 白云质灰岩 文献[24] 1.63 206 0.54 0.33 11 文献[17] 1.65 238 0.50 0.31 12 文献[23] 1.69 223 0.33 0.20 7 文献[25] 注:P为降雨量;T为年均温;RD为径流深;α=RD/P,为入渗系数 -
[1] Amiotte S P, Probst J L. Modelling of atmospheric CO2 consumption by chemical weathering of rocks: Application to the Garonne, Congo and Amazon basins[J]. Chemical Geology, 1993, 107(3/4): 205-210. [2] Shen T M, Li W, Pan W Z, et al. Role of bacterial carbonic anhydrase during CO2 capture in the CO2-H2O-carbonate system[J]. Biochemical Engineering Journal, 2017, 123: 66-74. doi: 10.1016/j.bej.2017.04.003 [3] Martin J B. Carbonate minerals in the global carbon cycle[J]. Chemical Geology, 2017, 449: 58-72. doi: 10.1016/j.chemgeo.2016.11.029 [4] Liu Z H, Dreybrodt W, Liu H. Atmospheric CO2 sink: Silicate weathering or carbonate weathering?[J]. Applied Geochemistry, 2011, 26: S292-S294. doi: 10.1016/j.apgeochem.2011.03.085 [5] Wang Z J, Yin J J, Pu J B, et al. Flux and influencing factors of CO2 outgassing in a karst spring-fed creek: Implications for carbonate weathering-related carbon sink assessment[J]. Journal of Hydrology, 2020, 596(2): 125710. [6] Liu Z H, Dreybrodt W, Wang H J. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth Science Reviews, 2010, 99(3): 162-172. [7] Liu Z H, Macpherson G L, Groves C, et al. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182: 42-49. doi: 10.1016/j.earscirev.2018.05.007 [8] Goldscheider N, Chen Z, Auler A S, et al. Global distribution of carbonate rocks and karst water resources[J]. Hydrogeology Journal, 2020, 28(5): 1661-1677. doi: 10.1007/s10040-020-02139-5 [9] 袁道先. 碳循环与全球岩溶[J]. 第四纪研究, 1993, 13(1): 1-6. doi: 10.3321/j.issn:1001-7410.1993.01.001Yuan D X. Carbon cycle and global karst[J]. Quaternary Sciences, 1993, 13(1): 1-6(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.1993.01.001 [10] 罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. doi: 10.19509/j.cnki.dzkq.2021.0054Luo M M, Zhou H, Guo X L, et al. Processes and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0054 [11] 江欣悦, 李静, 郭林, 等. 豫北平原浅层地下水化学特征与成因机制[J]. 地质科技通报, 2021, 40(5): 290-300. doi: 10.19509/j.cnki.dzkq.2021.0511Jiang X Y, Li J, Guo L, et al. Chemical characteristics and formation mechanism of shallow groundwater in the northern Henan Plain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 290-300(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0511 [12] Zeng Q R, Liu Z H, Chen B, et al. Carbonate weathering-related carbon sink fluxes under different land uses: A case study from the Shawan Simulation Test Site, Puding, Southwest China[J]. Chemical Geology, 2017, 474: 58-71. doi: 10.1016/j.chemgeo.2017.10.023 [13] Godsey S E, Kirchner J W, Clow D W. Concentration-discharge relationships reflect chemostatic characteristics of US catchments[J]. Hydrological Processes, 2009, 23(13): 1844-1864. doi: 10.1002/hyp.7315 [14] Wang Q F, Zheng H, Zhu X J, et al. Primary estimation of Chinese terrestrial carbon sequestration during 2001-2010[J]. Science Bulletin, 2015, 60(6): 577-590. doi: 10.1007/s11434-015-0736-9 [15] 王世杰, 刘再华, 倪健, 等. 中国南方喀斯特地区碳循环研究进展[J]. 地球与环境, 2017, 45(1): 2-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201701002.htmWang S J, Liu Z H, Ni J, et al. A review of research progress and future prospective of carbon cycle in karst area of South China[J]. Earth and Environment, 2017, 45(1): 2-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201701002.htm [16] Yan J H, Wang Y P, Zhou G Y, et al. Carbon uptake by karsts in the Houzhai Basin, southwest China[J]. Journal of Geophysical Research, 2011, 116(G4): 1-10. [17] 何师意, 康志强, 李清艳, 等. 高分辨率实时监测技术在岩溶碳汇估算中的应用: 以板寨地下河监测站为例[J]. 气候变化研究进展, 2011, 7(3): 157-161. doi: 10.3969/j.issn.1673-1719.2011.03.001He S Y, Kang Z Q, Li Q Y, et al. The utilization of real-time high resolution mornitoring skill in karst carbon sequestration: A case of the station in Banzhai subterranean stream catchment[J]. Advances in Climate Change Research, 2011, 7(3): 157-161 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-1719.2011.03.001 [18] 曾成, 刘再华. 建设岩溶水-碳通量大型模拟试验场的构想[J]. 资源环境与工程, 2013, 27(2): 196-221. doi: 10.3969/j.issn.1671-1211.2013.02.018Zeng C, Liu Z H. Ideas of construction of simulation test field of karst water and carbon fluxes[J]. Resources Environment & Engineering, 2013, 27(2): 196-221(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1211.2013.02.018 [19] 朱辉, 曾成, 刘再华, 等. 岩溶作用碳汇强度变化的土地利用调控规律: 贵州普定岩溶水-碳通量大型模拟试验场研究[J]. 水文地质工程地质, 2015, 42(6): 120-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201506020.htmZhu H, Zeng C, Liu Z H, et al. Karst-related carbon sink flux variations caused by land use changes: An example from the Puding karst test site in Guizhou[J]. Hydrogeology & Engineering Geology, 2015, 42(6): 120-125(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201506020.htm [20] 邱冬生, 庄大方, 胡云锋, 等. 中国岩石风化作用所致的碳汇能力估算[J]. 地球科学: 中国地质大学学报, 2004, 29(2): 177-182. doi: 10.3321/j.issn:1000-2383.2004.02.009Qiu D S, Zhuang D F, Hu Y F, et al. Estimation of carbon sink capacity caused by rock weathering in China[J]. Earth Science: Journal of China University of Geosciences, 2004, 29(2): 177-182(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2004.02.009 [21] 彭韬, 周长生, 宁茂岐, 等. 基于探地雷达解译的喀斯特坡地表层岩溶带空间分布特征研究[J]. 第四纪研究, 2017, 37(6): 1262-1270.Peng T, Zhou C S, Ning M Q, et al. Study on spatial distribution of epikarst zone on plateau karst slope based on ground-penetrating radar[J]. Quaternary Sciences, 2017, 37(6): 1262-1270(in Chinese with English abstract). [22] 梁杏, 张人权, 牛宏, 等. 地下水流系统理论与研究方法的发展[J]. 地质科技情报, 2012, 31(5): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205020.htmLiang X, Zhang R Q, Niu H, et al. Development of the theory and research method of groundwater flow system[J]. Geological Science and Technology Information, 2012, 31(5): 143-151(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205020.htm [23] Zeng S B, Liu H, Liu Z H, et al. Seasonal and diurnal variations in DIC, NO3- and TOC concentrations in spring-pond ecosystems under different land-uses at the Shawan Karst Test Site, SW China: Carbon limitation of aquatic photosynthesis[J]. Journal of Hydrology, 2019, 574: 811-821. doi: 10.1016/j.jhydrol.2019.04.090 [24] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of ground water and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103 [25] 郭芳, 姜光辉, 康志强. 亚热带典型岩溶水系统的碳汇效应对比研究[J]. 中国岩溶, 2011, 30(4): 403-409. doi: 10.3969/j.issn.1001-4810.2011.04.009Guo F, Jiang G H, Kang Z Q. Study on carbon sink effect in typical sub-tropical karst water system[J]. Carsologica Sinica, 2011, 30(4): 403-409(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2011.04.009 [26] Zeng C, Liu Z H, Zhao M, et al. Hydrologically-driven variations in the karst-related carbon sink fluxes: Insights from high-resolution monitoring of three karst catchments in Southwest China[J]. Journal of Hydrology, 2016, 533: 74-90. doi: 10.1016/j.jhydrol.2015.11.049 [27] Zeng S B, Liu Z H, Goldscheider N, et al. Comparisons on the effects of temperature, runoff, and land-cover on carbonate weathering in different karst catchments: Insights into the future global carbon cycle[J]. Hydrogeology Journal, 2020, 29: 331-345. -