Volume 41 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Su Xiaoming, Wu Ruoning, Zhao Changju, Wang Qiren, Yuan Yuan, Xiong Hanqiao. Failure mechanism of cavitation-induced shear of the plugging layer in high-temperature high-pressure fractured gas reservoirs in the Tazhong block, NW China[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 21-29. doi: 10.19509/j.cnki.dzkq.2021.0059
Citation: Su Xiaoming, Wu Ruoning, Zhao Changju, Wang Qiren, Yuan Yuan, Xiong Hanqiao. Failure mechanism of cavitation-induced shear of the plugging layer in high-temperature high-pressure fractured gas reservoirs in the Tazhong block, NW China[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 21-29. doi: 10.19509/j.cnki.dzkq.2021.0059

Failure mechanism of cavitation-induced shear of the plugging layer in high-temperature high-pressure fractured gas reservoirs in the Tazhong block, NW China

doi: 10.19509/j.cnki.dzkq.2021.0059
  • Received Date: 15 Mar 2021
    Available Online: 07 Sep 2022
  • To profoundly understand the plugging layer failure behavior of high-temperature high-pressure fractured gas reservoirs in the Tazhong block, the failure characteristics of high-temperature high-pressure fractured gas reservoirs were studied and analyzed based on the combination of reservoir characteristics, fluid properties and the microscaled physical structure of the plugging layer. The concept of cavitation-induced shear failure is proposed, and the physical model of cavitation-induced shear failure is established. The cavitation-induced shear failure process of the plugging layer is systematically studied with the aid of granular material mechanics and liquid bridge theory. In addition, laboratory experiments of reversed pressure-bearing were carried out based on the principle of reversed cavitation. Results show that the cavitation-induced shear failure of the fractured sealing layer is a special kind of failure modes of the plugging layerin gas reservoirs. This process can be divided into three steps: viscosity reduction because of gas diffusion, cavitation-induced shear stripping and fluids displacement mismatch shearing destructions. In addition, the experimental results show that the plugging layer with a positive pressure of 6 MPa has different shear failure resistances for different fluids. With the displacement medium changing from liquid to gas, the reversed pressure-bearing value of the plugging layer decreases from 2.0 MPa (22 min) and 2.5 MPa (30 min) to 1.5 MPa (10 min) and 1.0 MPa (12 min), respectively. The comprehensive shear resistance is reduced by approximately 50%, indicating that gas has different destructive ability and destructive mechanism compared to liquid.

     

  • loading
  • [1]
    闫丰明, 康毅力, 孙凯, 等. 裂缝-孔洞型碳酸盐岩储层暂堵性堵漏机理研究[J]. 石油钻探技术, 2011, 39(2): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201102018.htm

    Yan F M, Kang Y L, Sun K, et al. Mechanism of temporary sealing for fractured-vuggy carbonate reservoir[J]. Petroleum Drilling Techniques, 2011, 39(2): 81-85(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201102018.htm
    [2]
    杨枝. 塔中地区裂缝性碳酸盐岩储层保护技术研究[D]. 北京: 中国地质大学(北京), 2010.

    Yang Z. The research on protection technology of fractured carbonate reservoir in Tarim Basin[D]. Beijing: China University of Geosciences(Beijing), 2010(in Chinese with English abstract).
    [3]
    许成元, 闫霄鹏, 康毅力, 等. 深层裂缝性储集层封堵层结构失稳机理与强化方法[J]. 石油勘探与开发, 2020, 47(2): 399-408. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002021.htm

    Xu C Y, Yan X P, Kang Y L, et al. Structural failure mechanism and strengthening method of fracture plugging zone for lost circulation control in deep naturally fractured reservoirs[J]. Petroleum Exploration and Development, 2020, 47(2): 399-408(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002021.htm
    [4]
    苏晓明, 练章华, 方俊伟, 等. 适用于塔中区块碳酸盐岩缝洞型异常高温高压储集层的钻井液承压堵漏材料[J]. 石油勘探与开发, 2019, 46(1): 168-175. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901017.htm

    Su X M, Lian Z H, Fang J W, et al. Lost circulation material for abnormally high temperature and pressure fractured-vuggy carbonate reservoirs in Tazhong block, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(1): 168-175(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901017.htm
    [5]
    Zhang R, Bo K, Liu Z. A method of sizing plugging nanoparticles to prevent water invasion for shale wellbore stability based on CFD-DEM simulation[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107733. doi: 10.1016/j.petrol.2020.107733
    [6]
    Li Z Y, Li X G, Du K, et al. Development of a new high-temperature and high-strength polymer gel for plugging fractured reservoirs[J]. Upstream Oil and Gas Technology, 2020, 5: 100014. doi: 10.1016/j.upstre.2020.100014
    [7]
    Yan X, Kang Y, Xu C, et al. Fracture plugging zone for lost circulation control in fractured reservoirs: Multiscale structure and structure characterization methods[J]. Powder Technology, 2020, 370: 159-175. doi: 10.1016/j.powtec.2020.05.026
    [8]
    Yang M, Chen Y. Investigation of LCM soaking process on fracture plugging for fluid loss remediation and formation damage control[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103444 doi: 10.1016/j.jngse.2020.103444
    [9]
    李大奇, 康毅力, 刘修善, 等. 基于漏失机理的碳酸盐岩地层漏失压力模型[J]. 石油学报, 2011, 32(5): 900-904. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201105027.htm

    Li D Q, Kang Y L, Liu X S, et al. The lost circulation pressure of carbonate formations on the basis of leakage mechanisms[J]. Acta Petrolei Sinica, 2011, 32(5): 900-904(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201105027.htm
    [10]
    吕开河, 邱正松, 魏慧明, 等. 自适应防漏堵漏钻井液技术研究[J]. 石油学报, 2008, 29(5): 757-760, 765. doi: 10.3321/j.issn:0253-2697.2008.05.023

    Lü K H, Qiu Z S, Wei H M, et al. Study on techniques of auto-adapting lost circulation resistance and control for drilling fluid[J]. Acta Petrolei Sinica, 2008, 29(5): 757-760, 765(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2008.05.023
    [11]
    牛磊星, 孙平贺. 丙烯酸高吸水膨胀树脂在深部钻探中的堵漏试验[J]. 地质科技情报, 2017, 36(1): 208-212. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701026.htm

    Niu L X, Sun P H. Experimental study on the plugging of acrylic acid high water absorbing resin in deep drilling[J]. Geological Science and Technology Information, 2017, 36(1): 208-212(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701026.htm
    [12]
    王新新, 朱永峰, 杨鹏飞, 等. 塔里木盆地哈拉哈塘油田A-B区块二叠系火成岩漏失原因与应对措施[J]. 地质科技情报, 2019, 38(2): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902015.htm

    Wang X X, Zhu Y F, Yang P F, et al. Lost circulation reason and solutions of Permian igneous rock in Halahatang Oilfield A-B area, Tarim Basin[J]. Geological Science and Technology Information, 2019, 38(2): 136-142(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902015.htm
    [13]
    邱正松, 刘均一, 周宝义, 等. 钻井液致密承压封堵裂缝机理与优化设计[J]. 石油学报, 2016, 37(2): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2016S2017.htm

    Qiu Z S, Liu J Y, Zhou B Y, et al. Tight fracture-plugging mechanism and optimized design for plugging drilling fluid[J]. Acta Petrolei Sinica, 2016, 37(2): 137-143(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2016S2017.htm
    [14]
    许成元. 裂缝性储层强化封堵承压能力模型与方法[D]. 成都: 西南石油大学, 2015.

    Xu C Y. Models and methods to strengthen wellbore pressure containment by fracture plugging in fractured reservoirs[D]. Chengdu: Southwest Petroleum University, 2015(in Chinese with English abstract).
    [15]
    邱正松, 暴丹, 刘均一, 等. 裂缝封堵失稳微观机理及致密承压封堵实验[J]. 石油学报, 2018, 39(5): 587-596. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201805010.htm

    Qiu Z S, Bao D, Liu J Y, et al. Microcosmic mechanism of fracture-plugging instability and experimental study on pressure bearing and tight plugging[J]. Acta Petrolei Sinica, 2018, 39(5): 587-596(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201805010.htm
    [16]
    Peter E C, Saeed S, Raj K. Lost circulation and filter cake evolution: Impact of dynamic wellbore conditions and wellbore strengthening implications[J]. Journal of Petroleum Science and Engineering, 2018, 171: 1326-1337. doi: 10.1016/j.petrol.2018.08.063
    [17]
    康毅力, 余海峰, 许成元, 等. 毫米级宽度裂缝封堵层优化设计[J]. 天然气工业, 2014, 34(11): 88-94. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201411019.htm

    Kang Y L, Yu H F, Xu C Y, et al. An optimal design for millimeter-wide fracture-plugged zones[J]. Natural Gas Industry, 2014, 34(11): 88-94(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201411019.htm
    [18]
    Shamlooh M, Hamza A, Hussein I A, et al. Investigation of the rheological properties of nanosilica-reinforced PAM /PEI gels for wellbore strengthening at high reservoir temperatures[J]. Energy & Fuels, 2019, 33(1): 6829-6836.
    [19]
    王贵, 蒲晓林. 提高地层承压能力的钻井液堵漏作用机理[J]. 石油学报, 2010, 31(6): 1009-1012. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201006026.htm

    Wang G, Pu X L. Plugging mechanism of drilling fluid by enhancing wellbore pressure[J]. Acta Petrolei Sinica, 2010, 31(6): 1009-1012(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201006026.htm
    [20]
    王平全, 李再钧, 聂勋勇, 等. 用于钻井堵漏和封堵的特种凝胶抗冲稀性能[J]. 石油学报, 2012, 33(4): 697-701. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201204025.htm

    Wang P Q, Li Z J, Nie X Y, et al. Anti-dilution properties of a special gel applied to loss circulation control in drilling[J]. Acta Petrolei Sinica, 2012, 33(4): 697-701(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201204025.htm
    [21]
    暴丹, 邱正松, 邱维清, 等. 高温地层钻井堵漏材料特性实验[J]. 石油学报, 2019, 40(7): 846-857. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201907010.htm

    Bao D, Qiu Z S, Qiu W Q, et al. Experiment on properties of lost circulation materials in high temperature formation[J]. Acta Petrolei Sinica, 2019, 40(7): 846-857(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201907010.htm
    [22]
    佘继平. 页岩井周地层—封堵带系统突变失稳机理[D]. 成都: 西南石油大学, 2016.

    She J P. Catastrophic instability mechanism to system consisted of plugging zone and rock in shale formation[D]. Chengdu: Southwest Petroleum University, 2016(in Chinese with English abstract).
    [23]
    王贵. 提高地层承压能力的钻井液封堵理论与技术研究[D]. 成都: 西南石油大学, 2012.

    Wang G. Theory and technology on drilling fluids for wellborestrenthening[D]. Chengdu: Southwest Petroleum University, 2012(in Chinese with English abstract).
    [24]
    李大奇, 康毅力, 刘修善, 等. 裂缝性地层钻井液漏失动力学模型研究进展[J]. 石油钻探技术, 2013, 41(4): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201304011.htm

    Li D Q, Kang Y L, Liu X S, et al. Progress in drilling fluid loss dynamics model for fractured formations[J]. Petroleum Drilling Techniques, 2013, 41(4): 42-47(in Chinese with English abstract https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201304011.htm
    [25]
    孙其诚, 王光谦. 颗粒物质力学导论[M]. 北京: 科学出版社, 2009.

    Sun Q C, Wang G Q. Introduction to granular material mechanics[M]. Beijing: Science Press, 2009(in Chinese).
    [26]
    张韵洋. 薄弱地层封堵承压能力研究[D]. 成都: 西南石油大学, 2016.

    Zhang Y Y. Study on sealing and bearing capacity of weak formation[D]. Chengdu: Southwest Petroleum University, 2016(in Chinese with English abstract).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(277) PDF Downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return