Volume 41 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Gong Tianhao, Wu Linna, Chen Si, Pan Kai, Yu Zhenghong, Zhang Yuehui. Sedimentary characteristics and controlling factors of hyperpycnal flow in the Lower Shahejie Formation of Qikou Sag, Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 69-83. doi: 10.19509/j.cnki.dzkq.2021.0061
Citation: Gong Tianhao, Wu Linna, Chen Si, Pan Kai, Yu Zhenghong, Zhang Yuehui. Sedimentary characteristics and controlling factors of hyperpycnal flow in the Lower Shahejie Formation of Qikou Sag, Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 69-83. doi: 10.19509/j.cnki.dzkq.2021.0061

Sedimentary characteristics and controlling factors of hyperpycnal flow in the Lower Shahejie Formation of Qikou Sag, Bohai Bay Basin

doi: 10.19509/j.cnki.dzkq.2021.0061
  • Received Date: 20 Apr 2021
    Available Online: 07 Sep 2022
  • This study clarified the sedimentary characteristics of hyperpycnal flow sediments, investigated the plane and vertical characteristics and the differences in hyperpycnal flow sedimentary systems from different provenances, and finally discussed the controlling factors of hyperpycnal flow in rift basins. The sedimentary characteristics of hyperpycnal flow in the Lower Shahejie Formation of the Qikou Sag, Bohai Bay Basin have been studied through the comprehensive analysis of drilling core, logging, seismic attribute, and grain data.The results show that there are three typical recognition features for the hyperpycnal flow deposits in the study area: ① The vertical sedimentary sequence is composed of a reverse grain grading in the lower part, a normal grain grading in the upper part and a relatively thick layer with no obvious change in grain size; ② The sediment is dominated by a gradual suspension. The types of cumulative probability curves include a complex multistage style, an upper arch style and a low slope two-stage style; ③ The lithofacies is characterized by erosional filling deposition and various bedding structures with the development of maroon argillaceous layers, maroon gravels, abundant plant debris and carbonaceous debris. The channelized hyperpycnal flow sediments have multiple sources. The most significant source is the Gegu source, which is characterized by a long-distance transportation path, multiple flower bodies and widespread deposits along the transportation path.Two types of sedimentary models are established in this study, and the controlling factors of hyperpycnal flow include paleogeomorphology, paleoprovenance and paleoclimate. Considering that hyperpycnal flow widely exists in rift lacustrine basins with its channel sandstone bodies being good reservoir properties, our study suggests that hyperpycnal flow is a breakthrough point for oil and gas exploration in continental rift lacustrine basins.

     

  • loading
  • [1]
    Kuenen P H, Migilorini C I. Turbidity currents as a cause of graded bedding[J]. Geology, 1950, 58(2): 41-127.
    [2]
    蒲秀刚, 周立宏, 韩文中, 等. 歧口凹陷沙一下亚段斜坡区重力流沉积与致密油勘探[J]. 石油勘探与开发, 2014, 41(2): 138-149. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402003.htm

    Pu X G, Zhou L H, Han W Z, et al. Gravity flow sedimentation and tight oil exploration in lower first member of Shahejie Formation in slope area of Qikou Sag, Bohai Bay Basin[J]. Petroleum Explorationand Development, 2014, 41(2): 138-149(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402003.htm
    [3]
    王华, 陈思, 甘华军, 等. 浅海背景下大型浊积扇研究进展及堆积机制探讨: 以莺歌海盆地黄流组重力流为例[J]. 地学前缘, 2015, 22(1): 21-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501004.htm

    Wang H, Chen S, Gan H J, et al. Accumulation mechanism of large shallow marine turbidite deposits: A case study of gravity flow deposits of the Huangliu Formation in Yinggehai Basin[J]. Earth Science Frontiers, 2015, 22(1): 21-34(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501004.htm
    [4]
    李安琪, 叶绮, 王真真, 等. 琼东南盆地陵水凹陷北部梅山组砂质碎屑流沉积特征及油气地质意义[J]. 地质科技通报, 2021, 40(1): 110-118. doi: 10.19509/j.cnki.dzkq.2021.0106

    Li A Q, Ye Q, Wang Z Z, et al. Sedimentary characteristics and significance in hydrocarbon exploration of sandy debris flow in Meishan Formation of the northern Lingshui Sag, Qiongdongnan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 110-118(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0106
    [5]
    Walker R G. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps[J]. AAPG Bulletin, 1978, 62(6): 932-966.
    [6]
    Reading H G. Turbidite systems in deep-water basin margins classified by grain size and feeder system[J]. AAPG Bulletin, 1994, 78(5): 792-822.
    [7]
    Bates C. Rational theory of delta formation[J]. Bulletin of American Association of Petroleum Geology, 1953, 37(9): 2119-2162.
    [8]
    Mulder I, Syvitski J. Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J]. Journal of Geology, 1995, 103(3): 285-299. doi: 10.1086/629747
    [9]
    Zavala C, Arcuri M. Intrabasinal and extrabasinal turbidities: Origin and distinctive characteristics[J]. Sedimentary Geology, 2016, 337: 36-54. doi: 10.1016/j.sedgeo.2016.03.008
    [10]
    Zavala C, 潘树新. 异重流成因和异重岩沉积特征[J]. 岩性油气藏, 2018, 30(1): 1-18. doi: 10.3969/j.issn.1673-8926.2018.01.001

    Zavala C, Pan S X. Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics[J]. Lithologic Reservoirs, 2018, 30(1): 1-18(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2018.01.001
    [11]
    Zavala C, Arcuri M, Meglio M D, et al. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits[C]//Slatt R, Zavala C. Sediment transfer from shelf to deep water: Revisiting the delivery system. AAPG Studies in Geology 61, 2011: 31-51.
    [12]
    Shanmugam G. The hyperpycnite problem[J]. Journal of Palaeogeography, 2018, 7(3): 197-238.
    [13]
    孙福宁, 杨仁超, 李冬月. 异重流沉积研究进展[J]. 沉积学报, 2016, 34(3): 452-462. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201603003.htm

    Sun F N, Yang R C, Li D Y. Research progresses on hyperpycnal flow deposits[J]. Acta Sedimentologica Sinica, 2016, 34(3): 452-462(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201603003.htm
    [14]
    张国栋, 鲜本忠, 晁储志, 等. 鄂尔多斯盆地三水河剖面上三叠统块状砂岩的异重流成因: 来自岩石结构的证据[J]. 沉积学报, 2019, 37(5): 934-944. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905005.htm

    Zhang G D, Xian B Z, Chao C Z, et al. Flood-generated massive sandstones of the sanshuihe outcrop in the Triassic Ordos Basin: Evidence from sedimentary textural characteristics[J]. Acta Sedimentologica Sinica, 2019, 37(5): 934-944(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905005.htm
    [15]
    周立宏, 陈长伟, 韩国猛, 等. 断陷湖盆异重流沉积特征与分布模式: 以歧口凹陷板桥斜坡沙一下亚段为例[J]. 中国石油勘探, 2018, 23(4): 11-20. doi: 10.3969/j.issn.1672-7703.2018.04.002

    Zhou L H, Chen C W, Han G M, et al. Sedimentary characteristics and distribution patterns of hyperpycnal flow in rifted lacustrine basins: A case study on lower Es1 of Banqiao slope in Qikou Sag[J]. China Petroleum Exploration, 2018, 23(4): 11-20(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2018.04.002
    [16]
    王家豪, 王华, 肖敦清, 等. 陆相断陷湖盆异重流与滑塌型重力流沉积辨别[J]. 石油学报, 2020, 41(4): 392-402, 411. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004004.htm

    Wang J H, Wang H, Xiao D Q, et al. Differentiation between hyperpycnal flow deposition and slump-induced gravity flow deposition in terrestrial rifted lacustrine basin[J]. Acta Petrolei Sinica, 2020, 41(4): 392-402, 411(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004004.htm
    [17]
    Chen S, Wang H, Zhou L H, et al. Recognition and depiction of special geologic bodies of Member 3 of Dongying Formation in Littoral Slope Zone, Qikou Sag[J]. Journal of Central South University of Technology, 2011, 18(3): 898-908. doi: 10.1007/s11771-011-0779-2
    [18]
    Wang H, Bai Y F, Huang C Y, et al. Reconstruction and application of the Paleogene provenance system of the Dongying Formation in Qikou Depression[J]. Journal of China University of Geosciences, 2009, 34(3): 448-456. doi: 10.3799/dqkx.2009.050
    [19]
    任建业, 廖前进, 卢刚臣, 等. 黄骅坳陷构造变形格局与演化过程分析[J]. 大地构造与成矿学, 2010, 34(4): 461-472. doi: 10.3969/j.issn.1001-1552.2010.04.002

    Ren J Y, Liao Q J, Lu G C, et al. Deformation framework and evolution of the Huanghua Depression, Bohai Gulf[J]. Geotectonica et Metallogenia, 2010, 34(4): 461-472(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2010.04.002
    [20]
    Huang C Y, Wang H, Wu Y P, et al. Genetic types and sequence stratigraphy models of Palaeogene slope break belts in Qikou Sag, Huanghua Depression, Bohai Bay Basin, Eastern China[J]. Sedimentary Geology, 2012, 261: 65-75.
    [21]
    Chen S, Wang H, Zhou L H, et al. Sequence thickness and its response to episodic tectonic evolution in Paleogene Qikou Sag, Bohaiwan Basin[J]. Acta Geologica Sinica, 2012, 86(5): 1077-1092. doi: 10.1111/j.1755-6724.2012.00732.x
    [22]
    Zhou L H, Fu L X, Lou D, et al. Structural anatomy and dynamics of evolution of the Qikou Sag, Bohai Bay Basin: Implications for the destruction of North China craton[J]. Journal of Asian Earth Sciences, 2012, 47: 94-106. doi: 10.1016/j.jseaes.2011.06.004
    [23]
    王华, 白云风, 黄传炎, 等. 歧口凹陷古近纪东营期古物源体系重建与应用[J]. 地球科学: 中国地质大学学报, 2009, 34(3): 448-456. doi: 10.3321/j.issn:1000-2383.2009.03.009

    Wang H, Bai Y F, Huang C Y, et al. Reconstruction and application of the Paleogene provence system of the Dongying Formation in Qikou Depression[J]. Earth Science: Journal of China University of Geosciences, 2009, 34(3): 448-456(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2009.03.009
    [24]
    刘可行, 甘华军, 陈思, 等. 高精度层序格架下的陆相断陷湖盆沉积体系演化: 以南堡凹陷老爷庙地区东营组三段为例[J]. 地质科技情报, 2019, 38(3): 88-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903009.htm

    Liu K X, Gan H J, Chen S, et al. Evolution of sedimentary system of continental faulted lacustrine basin under high-precision sequence framework: A case from the Third Member of Dongying Formation in Laoyemiao area, Nanpu Sag[J]. Geological Science and Technology Information, 2019, 38(3): 88-102(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903009.htm
    [25]
    Wang H, Chen S, Huang C Y, et al. Architecture of sandstone bodies of Paleogene Shahejie Formation in northern Qikou Sag, Northeast China[J]. Journal of Earth Science, 2017, 28(6): 1078-1085. doi: 10.1007/s12583-016-0937-4
    [26]
    刘可行, 甘华军, 陈思, 等. 南堡凹陷高北地区"异迁移"型层序构型成因及其对沉积的意义[J]. 地球科学, 2020, 45(10): 3603-3617. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202010008.htm

    Liu K X, Gan H J, Chen S, et al. Genetic mechanism of allogenic migrated sequence stratigraphic architecture in Gaobei area of Nanpu Sag and its significance for sedimentation[J]. Earth Science, 2020, 45(10): 3603-3617(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202010008.htm
    [27]
    黄传炎, 王华, 吴永平, 等. 歧口凹陷第三系层序格架下的油气藏富集规律[J]. 吉林大学学报: 地球科学版, 2010, 40(5): 986-995. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201005003.htm

    Huang C Y, Wang H, Wu Y P, et al. Analysis of the hydrocarbon enrichment regularity in the sequence stratigraphic framework of Tertiary in Qikou Sag[J]. Journal of Jilin University : Earth Science Edition, 2010, 40(5): 986-995(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201005003.htm
    [28]
    王华, 陈思, 巩天浩, 等. 牵引流化重力流沉积过程与堆积机制: 以渤海湾盆地歧口凹陷为例[J]. 地质科技通报, 2020, 39(1): 95-104. doi: 10.19509/j.cnki.dzkq.2020.0111

    Wang H, Chen S, Gong T H, et al. Sedimentary process and accumulation mechanism of traction fluidization gravity flow: An example from Qikou Sag, Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 95-104(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0111
    [29]
    王华, 周立宏, 韩国猛, 等. 陆相湖盆大型重力流发育的成因机制及其优质储层特征研究: 以歧口凹陷沙河街组一段为例[J]. 地球科学, 2018, 43(10): 93-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810009.htm

    Wang H, Zhou L H, Han G M, et al. Large gravity flow deposits in the Member 1 of Paleogene Shahejie Formation, Qikou Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 93-114(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810009.htm
    [30]
    Lamb M P, Mohrig D. Do hyperpycnal-flow deposits record river-flood dynamics?[J]. Geology, 2009, 37(12): 1067-1070. doi: 10.1130/G30286A.1
    [31]
    Luan G Q, Dong C M, Lin C Y, et al. Development conditions, evolution process and depositional features of hyperpycnal flow[J]. Oil & Gas Geology, 2018, 3: 438-453.
    [32]
    杨田, 操应长, 王艳忠, 等. 异重流沉积动力学过程及沉积特征[J]. 地质论评, 2015, 61(1): 23-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201501002.htm

    Yang T, Cao Y C, Wang Y Z, et al. Sediment dynamics process and sedimentary characteristics of hyperpycnal flows[J]. Geological Review, 2015, 61(1): 23-33(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201501002.htm
    [33]
    Muler T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits: A review[J]. Marine and Petroleum Geology, 2003, 20(6/8): 861-882.
    [34]
    Mulder T, Migeon S, Savoye B, et al. Inversely graded turbidite sequences in the deep Mediterranean: A record of deposits from flood-generated turbidity currents?[J]. Geo-Marine Letters, 2001, 21(2): 86-93. doi: 10.1007/s003670100071
    [35]
    Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299. doi: 10.1046/j.1365-3091.2001.00360.x
    [36]
    Talling P J. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings[J]. Marine Geology, 2014, 352: 155-182. doi: 10.1016/j.margeo.2014.02.006
    [37]
    肖晨曦, 李志忠. 粒度分析及其在沉积学中应用研究[J]. 新疆师范大学学报: 自然科学版, 2006, 25(3): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSZ200603034.htm

    Xiao C X, Li Z Z, The research summary of grain size analysis and its application in the sedimentation[J]. Journal of Xinjiang Normal University: Natural Sciences Edition, 2006, 25(3): 118-123(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSZ200603034.htm
    [38]
    Soyinka O A, Slatt R M. Identification and micro-stratigraphy of hyperpycnites and turbidites in Cretaceous Lewis Shale, Wyoming[J]. Sedimentology, 2008, 55(5): 1117-1133. doi: 10.1111/j.1365-3091.2007.00938.x
    [39]
    Petter A L, Steel R J. Hyperpycnal flow variability and slope organization on an Eocene shelf margin, Central Basin, Spitsbergen[J]. AAPG Bulletin, 2006, 90(10): 1451-1472. doi: 10.1306/04240605144
    [40]
    曹卿荣, 李佩, 孙凯, 等. 应用地震属性分析技术刻画河道砂体[J]. 岩性油气藏, 2007, 19(2): 93-96. doi: 10.3969/j.issn.1673-8926.2007.02.019

    Cao Q R, Li P, Sun K, et al. Using seismic attributes to identify channel sand body[J]. Lithologic Reservoirs, 2007, 19(2): 93-96(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2007.02.019
    [41]
    柯友亮, 郝杰, 王华, 等. 基于叠后地震数据的南堡凹陷高南斜坡带三角洲扇体识别及演化特征[J]. 地质科技情报, 2019, 38(2): 89-100, 303. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902011.htm

    Ke Y L, Hao J, Wang H, et al. Identification and evolution of delta fans in the Gaonan slope of Nanpu Sag, based on post-stack seismic data[J]. Geological Science and Technology Information, 2019, 38(2): 89-100, 303(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902011.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(359) PDF Downloads(250) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return