Volume 42 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Huang Xiaokun, Wei Junhao, Shi Wenjie, Zhang Xinming, Gao Qiang, Wang Shuang. Identification of the geochemical anomalies using the catchment basin analysis: A case study of 1∶50000 geochemical survey of stream sediments in Wulasitai region, East Kunlun Orogenic Belt[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 324-338. doi: 10.19509/j.cnki.dzkq.2021.0093
Citation: Huang Xiaokun, Wei Junhao, Shi Wenjie, Zhang Xinming, Gao Qiang, Wang Shuang. Identification of the geochemical anomalies using the catchment basin analysis: A case study of 1∶50000 geochemical survey of stream sediments in Wulasitai region, East Kunlun Orogenic Belt[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 324-338. doi: 10.19509/j.cnki.dzkq.2021.0093

Identification of the geochemical anomalies using the catchment basin analysis: A case study of 1∶50000 geochemical survey of stream sediments in Wulasitai region, East Kunlun Orogenic Belt

doi: 10.19509/j.cnki.dzkq.2021.0093
  • Received Date: 31 May 2021
  • Geochemical survey of stream sediments is an effective technology for mineral prospecting. The extraction of geochemical anomalies in stream sediments based on catchment basins has always been one of the research hotspots.The catchment basin analysis method is proposed based on Sample Catchment Basin Analysis (SCBA)in this paper, and it is used to identify geochemical anomalies in the Wulasitai region, East Kunlun Orogenic Belt in Qinghai Province.Catchment basins are divided by a high-precision DEM, and the Au, Ag, and Pb factor loadings of 1∶50000 stream sediments are measured by the catchment basin analysis. During the extraction process, a variety of geomorphic parameters such as main stream slope, relief ratio, catchment basin area, are used as the sediment delivery ratios for residual correction calculation, and the geochemical background and anomalies are separated by the C-A fractal modeling. The anomaly extraction results show that the area of the catchment basin is the most suitable parameter as the sediment delivery ratio to participate in the downstream attenuation correction. The catchment basin method can effectively identify and extract geochemical anomaly information.Anomalies correspond well to the spatial location of ore deposits, and can provide beneficial information for the next step of mineral prospecting.

     

  • loading
  • [1]
    陈绍强, 庞保成, 张冠清. 地质子区地球化学异常衬度值法在广西百色地区的应用[J]. 矿产与地质, 2019, 33(6): 1057-1061. doi: 10.3969/j.issn.1001-5663.2019.06.016

    Chen S Q, Pang B C, Zhang G Q. The application of geochemical anomaly contrast value method for geological subinterval areas in Baise City of Guangxi[J]. Mineral Resources and Geology, 2019, 33(6): 1057-1061(in Chinese with English abstract). doi: 10.3969/j.issn.1001-5663.2019.06.016
    [2]
    魏俊浩. 初论成矿场与矿产勘查意义[J]. 地质科技通报, 2020, 39(1): 114-129. doi: 10.19509/j.cnki.dzkq.2020.0113

    Wei J H. Preliminary discussion on the theory of ore-forming field and its significant role for mineral exploration[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 114-129(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0113
    [3]
    石文杰, 魏俊浩, 谭俊, 等. 基于滑动窗口对数标准离差法的地球化学异常识别: 以青海多彩地区1: 5万水系沉积物地球化学测量为例[J]. 地质科技情报, 2019, 38(5): 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905008.htm

    Shi W J, Wei J H, Tan J, et al. Identifying the geochemical anomalies using Logarithmic Standard Deviation Statistics Method based on sliding window: The geochemical survey of 1: 50000 water sediments in Duocai region of Qinghai Province as an example[J]. Geological Science and Technology Information, 2019, 38(5): 81-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905008.htm
    [4]
    王治华, 谭俊, 王凤林, 等. 多种区域化探数据处理方法及异常提取效果对比研究: 以青海小河坝地区水系沉积物测量为例[J]. 矿产勘查, 2019, 10(2): 321-332. doi: 10.3969/j.issn.1674-7801.2019.02.024

    Wang Z H, Tan J, Wang F L, et al. A comparative study of several regional geochemical data processing methods and extraction effects of anomalies: A case study of stream system sediments in Xiaoheba area of Qinghai Province[J]. Mineral Exploration, 2019, 10(2): 321-332(in Chinese with English abstract). doi: 10.3969/j.issn.1674-7801.2019.02.024
    [5]
    石文杰, 魏俊浩, 王启, 等. 分区上异点校正法在干旱地区1: 5万地球化学异常圈定中的应用: 以我国西北某地区为例[J]. 地质科技情报, 2011, 30(1): 34-41. doi: 10.3969/j.issn.1000-7849.2011.01.006

    Shi W J, Wei J H, Wang Q, et al. Delineation of 1: 50000 geochemical anomalies based on the method of unit-wise adjustment of outliers in gobigeomorphologic landscape: An example of an arid area from Northwestern China[J]. Geological Science and Technology Information, 2011, 30(1): 34-41(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2011.01.006
    [6]
    赵宁博, 傅锦, 张川, 等. 子区中位数衬值滤波法在地球化学异常识别中的应用[J]. 世界核地质科学, 2012, 29(1): 47-51. doi: 10.3969/j.issn.1672-0636.2012.01.008

    Zhao N B, Fu J, Zhang C, et al. Application of subinterval area median contrast filtering method in the recognizing of geochemical anomalies[J]. World Nuclear Geoscience, 2012, 29(1): 47-51(in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2012.01.008
    [7]
    史长义, 张金华, 黄笑梅. 子区中位数衬值滤波法及弱小异常识别[J]. 物探与化探, 1999, 23(4): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH904.001.htm

    Shi C Y, Zhang J H, Huang X M. Subregion median contrast filtering method and recognition of weak anomalies[J]. Geophysical and Geochemical Exploration, 1999, 23(4): 11-18(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH904.001.htm
    [8]
    Cao M, Lu L. Application of the multivariate canonical trend surface method to the identification of geochemical combination anomalies[J]. Journal of Geochemical Exploration, 2015, 153: 1-10. doi: 10.1016/j.gexplo.2014.11.006
    [9]
    Davis J C, Sampson R J. Statistics and data analysis in geology[M]. New York: Wiley, 1986.
    [10]
    成秋明, 张生元, 左仁广, 等. 多重分形滤波方法和地球化学信息提取技术研究与进展[J]. 地学前缘, 2009, 16(2): 185-198. doi: 10.3321/j.issn:1005-2321.2009.02.014

    Cheng Q M, Zhang S Y, Zuo R G, et al. Progress of multifractal filtering techniques and their applications in geochemical information extraction[J]. Earth Science Frontiers, 2009, 16(2): 185-198(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2009.02.014
    [11]
    Cheng Q M, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994, 51(2): 109-130. doi: 10.1016/0375-6742(94)90013-2
    [12]
    左仁广, 彭勇, 李童, 等. 基于深度学习的地质找矿大数据挖掘与集成的挑战[J]. 地球科学, 2020, 46(1): 350-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202101028.htm

    Zuo R G, Peng Y, Li T, et al. Challenges of geological prospecting big data mining and integration using deep learning algorithms[J]. Earth Science, 2020, 46(1): 350-358(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202101028.htm
    [13]
    Rose A W, Dahlberg E C, Keith M. A multiple regression technique for adjusting background values in stream sediment geochemistry[J]. Economic Geology, 1970, 65(2): 156-165. doi: 10.2113/gsecongeo.65.2.156
    [14]
    Hawkes H E. The downstream dilution of stream sediment anomalies[J]. Journal of Geochemical Exploration, 1976, 6(1/2): 345-358.
    [15]
    Bonham-Carter G, Rogers P, Ellwood D. Catchment basin analysis applied tosurficial geochemical data, Cobequid Highlands, Nova Scotia[J]. Journal of Geochemical Exploration, 1987, 29(1/3): 259-278.
    [16]
    Bonham-Carter G F, Goodfellow W D. Autocorrelation structure of stream-sediment geochemical data: interpretation of zinc and lead anomalies, Nahanni river area, Yukon-Northwest Territories, Canada[C]//Anon. Geostatistics for natural resources characterization. NATO advanced Study Institute, 1984: 817-829.
    [17]
    Moon C J. Towards a quantitative model of downstream dilution of point source geochemical anomalies[J]. Journal of Geochemical Exploration, 1999, 65(2): 111-132. doi: 10.1016/S0375-6742(98)00065-X
    [18]
    Carranza E J M. Usefulness of stream order to detect stream sediment geochemical anomalies[J]. Geochemistry: Exploration, Environment, Analysis, 2004, 4(4): 341-352. doi: 10.1144/1467-7873/03-040
    [19]
    Yousefi M, Carranza E J M, Kamkar-Rouhani A. Weighted drainage catchment basin mapping of geochemical anomalies using stream sediment data for mineral potential modeling[J]. Journal of Geochemical Exploration, 2013, 128: 88-96. doi: 10.1016/j.gexplo.2013.01.013
    [20]
    Farahbakhsh E, Chandra R, Eslamkish T, et al. Modeling geochemical anomalies of stream sediment data through a weighted drainage catchment basin method for detecting porphyry Cu-Au mineralization[J]. Journal of Geochemical Exploration, 2019, 204: 12-32. doi: 10.1016/j.gexplo.2019.05.003
    [21]
    Carranza E J M. Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes[J]. Geochemistry: Exploration, Environment, Analysis, 2010, 10(2): 171-187. doi: 10.1144/1467-7873/09-223
    [22]
    Carranza E J M. Catchment basinmodelling of stream sediment anomalies revisited: Incorporation of EDA and fractal analysis[J]. Geochemistry: Exploration, Environment, Analysis, 2010, 10(4): 365-381. doi: 10.1144/1467-7873/09-224
    [23]
    Spadoni M. Geochemical mapping using a geomorphologic approach based on catchments[J]. Journal of Geochemical Exploration, 2006, 90(3): 183-196. doi: 10.1016/j.gexplo.2005.12.001
    [24]
    Mokhtari A R, Garousi Nezhad S. A modified equation for the downstream dilution of stream sediment anomalies[J]. Journal of Geochemical Exploration, 2015, 159: 185-193. doi: 10.1016/j.gexplo.2015.09.007
    [25]
    Shahrestani S, Mokhtari A R. Dilution correction equation revisited: The impact of stream slope, relief ratio and area size of basin on geochemical anomalies[J]. Journal of African Earth Sciences, 2017, 128: 16-26. doi: 10.1016/j.jafrearsci.2016.06.019
    [26]
    Shahrestani S, Mokhtari A R. Improved detection of anomalous catchment basins by incorporating drainage density in dilution correction of geochemical residuals[J]. Geochemistry: Exploration, Environment, Analysis, 2017, 17(3): 194-203. doi: 10.1144/geochem2016-015
    [27]
    Garousi N S, Mokhtari A R, Roshani Rodsari P. The true sample catchment basin approach in the analysis of stream sediment geochemical data[J]. Ore Geology Reviews, 2017, 83: 127-134. doi: 10.1016/j.oregeorev.2016.12.008
    [28]
    Spadoni M, Cavarretta G, Patera A. Cartographic techniques for mapping the geochemical data of stream sediments: The "Sample Catchment Basin" approach[J]. Environmental Geology, 2004, 45(5): 593-599. doi: 10.1007/s00254-003-0926-7
    [29]
    黄啸坤, 魏俊浩, 李欢, 等. 东昆仑巴隆地区晚三叠世石英闪长岩成因: U-Pb年代学、地球化学及Sr-Nd-Hf同位素制约[J]. 地球科学, 2021, 46(6): 1-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202106008.htm

    Huang X K, Wei J H, Li H, et al. Zircon U-Pb geochronological, elemental and Sr-Nd-Hf isotopic constraints on petrogenesis of late Triassic quartz diorite in Balong region, East Kunlun Orogen[J]. Earth Science, 2021, 46(6): 1-27(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202106008.htm
    [30]
    徐晓波, 王连训, 马昌前, 等. 东昆仑造山带巴隆地区羊粪沟中酸性岩脉成因及其地质意义[J]. 矿物岩石地球化学通报, 2021, 40(3): 653-676. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202103010.htm

    Xu X B, Wang L X, Ma C Q, et al. Petrogenesis and geological implications of the Yangfengou intermediate-felsic dykes in the Balong area within the Eastern Kunlun Orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(3): 653-676(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202103010.htm
    [31]
    管祥波, 李军. 青海省都兰县巴隆岩金矿床地质特征及找矿标志[J]. 山东国土资源, 2016, 32(12): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201612003.htm

    Guan X B, Li J. Geological characteristics and prospecting marks of Balong rock gold deposit in Dulan County of Qinghai Province[J]. Shandong Land and Resources, 2016, 32(12): 14-18(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201612003.htm
    [32]
    邱瑜, 卢佳, 田滔, 等. 1: 2.5万地球化学测量在东昆仑巴隆地区找矿中的应用[J]. 中国锰业, 2019, 37(4): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201904010.htm

    Qiu Y, Lu J, Tian T, et al. An application of 1: 25000 geochemical survey to ore prospecting in Balong area of East Kunlun[J]. China's Manganese Industry, 2019, 37(4): 47-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201904010.htm
    [33]
    杨经绥, 许志琴, 马昌前, 等. 复合造山作用和中国中央造山带的科学问题[J]. 中国地质, 2010, 37(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201001004.htm

    Yang J S, Xu Z Q, Ma C Q, et al. Compound orogeny and scientific problems concerning the Central Orogenic Belt of China[J]. Geology in China, 2010, 37(1): 1-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201001004.htm
    [34]
    Hu Y, Niu Y L, Li J Y, et al. Petrogenesis and tectonic significance of the Late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau[J]. Lithos, 2016, 245: 205-222.
    [35]
    Zhang J Y, Ma C Q, Xiong F H, et al. Early Paleozoic high-Mg diorite-granodiorite in the eastern Kunlun Orogen, Western China: Response to continental collision and slab break-off[J]. Lithos, 2014, 210/211: 129-146.
    [36]
    Matte P, Tapponnier P, Arnaud N, et al. Tectonics of western Tibet, between the Tarim and the Indus[J]. Earth and Planetary Science Letters, 1996, 142(3/4): 311-330.
    [37]
    陈加杰, 付乐兵, 魏俊浩, 等. 东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约[J]. 地球科学: 中国地质大学学报, 2016, 41(11): 1863-1882. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201611004.htm

    Chen J J, Fu L B, Wei J H, et al. Geochemical characteristics of late Ordovician granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province: Implications on the evolution of Proto-Tethys Ocean[J]. Earth Science: Journal of China University of Geosciences, 2016, 41(11): 1863-1882(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201611004.htm
    [38]
    莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403-414. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm

    Mo X X, Luo Z H, Deng J F, et al. Granitoids and crustal growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007, 13(3): 403-414(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm
    [39]
    Xiong F H, Ma C Q, Zhang J Y, et al. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for magma mixing during subduction of Paleo-Tethyan lithosphere[J]. Mineralogy and Petrology, 2012, 104(3/4): 211-224.
    [40]
    陈世顺, 樊双虎, 杨小斌. 青海省都兰县沟里地区1: 5万矿产地质、水系沉积物测量综合调查项目成果报告[R]. 西宁: 青海省有色地质勘查局, 2011.

    Chen S S, Fan S H, Yang X B. Achievement report of the 1: 50000 comprehensive survey project of mineral geology and stream sediments survey in Gouli, Dulan, Qinghai Province[R]. Xining: Qinghai Provincial Non-ferrous Metal Geological and Minerals Exploration Bureau, 2011.
    [41]
    李照会, 郭良, 刘荣华, 等. 基于DEM数字河网提取时集水面积阈值与河源密度关系的研究[J]. 地球信息科学学报, 2018, 20(9): 1244-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201809006.htm

    Li Z H, Guo L, Liu R H, et al. The relationship between the threshold of catchment area for extraction of digital river network from DEM and the river source density[J]. Journal of Geo-Information Science, 2018, 20(9): 1244-1251(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201809006.htm
    [42]
    吴泰兵, 夏达忠, 张行南. 基于改进适度指数法的流域流水网阈值确定研究[J]. 水电能源科学, 2011, 29(4): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201104005.htm

    Wu T B, Xia D Z, Zhang X N. Identification of critical contributing area based on improved fitness index method[J]. Water Resources and Power, 2011, 29(4): 18-20(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201104005.htm
    [43]
    马永明, 张利华, 朱志儒, 等. 堵河子流域划分及其NDVI特征分析[J]. 云南大学学报: 自然科学版, 2020, 42(2): 290-298. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ202002014.htm

    Ma Y M, Zhang L H, Zhu Z R, et al. Division of Duhe River Basin and analysis of its NDVI characteristics[J]. Journal of Yunnan University: Natural Sciences Edition, 2020, 42(2): 290-298(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ202002014.htm
    [44]
    杨邦, 任立良. 集水面积阈值确定方法的比较研究[J]. 水电能源科学, 2009, 27(5): 11-14, 171. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY200905005.htm

    Yang B, Ren L L. Identification and comparison of critical support area in extracting drainage network from DEM[J]. Water Resources and Power, 2009, 27(5): 11-14, 171(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY200905005.htm
    [45]
    Pike R J, Wilson S E. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis[J]. Geological Society of America Bulletin, 1971, 82(4): 1079-1084.
    [46]
    Carranza E J M. Geochemical anomaly and mineral prospectivity mapping in GIS[M].: Elsevier, 2008.
    [47]
    Carranza E J M, Hale M. A catchment basin approach to the analysis of reconnaissance geochemical-geological data fromAlbay Province, Philippines[J]. Journal of Geochemical Exploration, 1997, 60(2): 157-171.
    [48]
    Yuan Y, Jiang Y, Taguas E V, et al. Sediment loss and its cause in Puerto Rico watersheds[J]. Soil, 2015, 1(2): 595-602.
    [49]
    Ranasinghe P N, Fernando G W A R, Dissanayake C B, et al. Statistical evaluation of stream sediment geochemistry in interpreting the river catchment of high-grade metamorphic terrains[J]. Journal of Geochemical Exploration, 2009, 103(2): 97-114.
    [50]
    Zhang X, Wu S, Cao W, et al. Dependence of the sediment delivery ratio on scale and its fractal characteristics[J]. International Journal of Sediment Research, 2015, 30(4): 338-343.
    [51]
    Williams J R, Berndt H D. Sediment yield computed with universal equation[J]. Journal of the Hydraulics Division, 1972, 98(12): 2087-2098.
    [52]
    Schumm S A. Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey[J]. Geological Society of America Bulletin, 1956, 67(5): 597-646.
    [53]
    Lu H, Moran C J, Prosser I P. Modelling sediment delivery ratio over the Murray Darling Basin[J]. Environmental Modelling & Software, 2006, 21(9): 1297-1308.
    [54]
    Shi Z H, Ai L, Li X, et al. Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds[J]. Journal of Hydrology, 2013, 498: 165-176.
    [55]
    Boyce R. Sediment routing with sediment delivery ratios[J]. Present and Prospective Technology for Prediction Sediment, Sediment Yields and Sources, 1975: 61-65.
    [56]
    Vanoni V A. Sedimentation engineering[M].: American Society of Civil Engineers, 2006.
    [57]
    Carranza E J M. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features[J]. Ore Geology Reviews, 2009, 35(3/4): 383-400.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1394) PDF Downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return