Volume 41 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Song Jiahang, Yan Shaojun, Xiang Wei, Liu Jianhui, Zhao Gang, Jiang Siwei. Influencing factors of capillary water migration characteristics of the sandstones in Baoding Mountain, Dazu Stone Carvings[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 282-291. doi: 10.19509/j.cnki.dzkq.2021.0099
Citation: Song Jiahang, Yan Shaojun, Xiang Wei, Liu Jianhui, Zhao Gang, Jiang Siwei. Influencing factors of capillary water migration characteristics of the sandstones in Baoding Mountain, Dazu Stone Carvings[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 282-291. doi: 10.19509/j.cnki.dzkq.2021.0099

Influencing factors of capillary water migration characteristics of the sandstones in Baoding Mountain, Dazu Stone Carvings

doi: 10.19509/j.cnki.dzkq.2021.0099
  • Received Date: 01 Sep 2021
    Available Online: 07 Sep 2022
  • The Dafo Bay stone carvings in Baoding Mountain, Dazu District, Chongqing City, are suffering from serious capillary water damage, salt damage, biological and other derivative diseases caused by capillary water, which have brought a long-term negative effect on the protection of the world cultural heritage. Based on the field investigation of the Dafo Bay, the strata of the statuary cliff are divided into three sets: the upper sandstone of the reclining Buddha, the sandstone of the reclining Buddha and the lower sandstone of the reclining Buddha. Through a series of tests and experimental studies, the characteristics of sandstone in the Baoding Mountain area and the influence of temperature and humidity on capillary water are analyzed.The testing items include thin section identification, X-ray diffraction, chemical composition test, scanning electron microscopy, mercury injection test, Karsten tube penetration test, etc.The research results indicated that: compared with the upper and lower layers of the reclining Buddha sandstone, the Reclining Buddha body sandstone has the lowest maturity and the largest porosity and pore distribution range, which provides relatively good conditions for the migration of capillary water. The capillary water absorbability and capillary water elevation of the reclining Buddha body sandstone are the best, and the rise of capillary wateris closely related to the ambient temperature, relative humidity, and air circulation. In the tight sandstone of the Dazu Stone Carvings, a large number of interconnected micropores cannot play a role in the migration of capillary water. The effective pore diameter for capillary water migration in the reclining Buddha sandstone should be above 1 133.0 nm, and may reach 760.2 nm in extreme cases.The research results provide reliable data for an accurate understanding of the formation and evolution of capillary water in Dazu Stone Carvings, explain the formation mechanism of salt damage in Dazu Stone Carvings in winter, and provide a theoretical basis for managing capillary water in Dazu Stone Carvings.

     

  • loading
  • [1]
    World Heritage Centre. Dazu rock carvings[EB/OL]//Anon. World Heritage List. United nations educational, scientific and cultural organization. (1999-12-1). http://whc.unesco.org/en/list/912/
    [2]
    樊锦诗. 基于世界文化遗产价值的世界文化遗产地的管理与监测: 以敦煌莫高窟为例[J]. 敦煌研究, 2008, 28(6): 1-5, 114. doi: 10.3969/j.issn.1000-4106.2008.06.001

    Fan J S. The management and the monitoring system for the nature of the world cultural heritage site[J]. Dunhuang Research, 2008, 28(6): 1-5, 114 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-4106.2008.06.001
    [3]
    唐长清, 姚淇琳. 宝顶山大佛湾石窟明清修缮史料的整理[J]. 石窟寺研究, 2019(1): 237-248.

    Tang C Q, Yao Q L. A brief study and organization of historical records about repairing the Dafowan Cave Temples on Baoding Mountain[J]. Studies of the Cave Temples, 2019(1): 237-248 (in Chinese with English abstract).
    [4]
    陈卉丽, 蒋思维, 席周宽. 大足石刻的气象环境特征[J]. 华夏考古, 2004, 18(1): 55-59. doi: 10.3969/j.issn.1001-9928.2004.01.007

    Chen H L, Jiang S W, Xi Z K. The characters of weather and environment of Dazu Stonesculptures[J]. Huaxia Archaeology, 2004, 18(1): 55-59 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-9928.2004.01.007
    [5]
    Li Z, Wang L, Chen H, et al. Degradation of emerald green: Scientific studies on multi-polychrome Vairocana Statue in Dazu Rock Carvings, Chongqing, China[J]. Heritage Science, 2020, 8: 64-76. doi: 10.1186/s40494-020-00410-2
    [6]
    Gao F, Zhou X, Zhou H, et al. Characterization and analysis of sandstone substrate, mortar layers, gold foils, and paintings of the Avalokitesvara Statues in Dazu County (China)[J]. Journal of Cultural Heritage, 2016, 21: 881-888. doi: 10.1016/j.culher.2016.03.009
    [7]
    Wang H, He Z, Huang Y, et al. Bodhisattva head images modeling style recognition of Dazu Rock Carvings based on deep convolutional network[J]. Journal of Cultural Heritage, 2017, 27: 60-71. doi: 10.1016/j.culher.2017.03.006
    [8]
    侯能. 纳米SiO2在大足石刻石质文物加固中的应用研究[D]. 重庆: 重庆师范大学, 2017.

    Hou N. The application of nanosilion dioxide in Dazu Grottoes stone relics reinforcement research[D]. Chongqing: Chongqing Normal University, 2017 (in Chinese with English abstract).
    [9]
    冯太彬, 范子龙. 大足石刻彩绘信徒像保护修复技术[J]. 石窟寺研究, 2014, 5(1): 419-429.

    Feng T B, Fan Z L. The techniques of conservation and restoration of apolychrome stone statue of doner in Dazu Rock Carving[J]. Studies of the Cave Temples, 2014, 5(1): 419-429 (in Chinese with English abstract).
    [10]
    张兵峰, 蒋思维. 重庆大足石刻大佛湾渗水病害初探[J]. 中国文物科学研究, 2016, 11(1): 68-71. doi: 10.3969/j.issn.1674-9677.2016.01.018

    Zhang B F, Jiang S W. Preliminary exploration of water seepage disease on Big Buddha Bay of Dazu rock carving[J]. China Cultural Heritage Scientific Research, 2016, 11(1): 68-71 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-9677.2016.01.018
    [11]
    岳建伟, 林健, 王永锋, 等. 开封仿遗址土水理性质的改良研究[J]. 工程科学与技术, 2020, 52(1): 46-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202001006.htm

    Yue J W, Lin J, Wang Y F, et al. Study on the improvement of soil water in Kaifeng Imitation Site[J]. Advanced Engineering Sciences, 2020, 52(1): 46-55 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202001006.htm
    [12]
    杨强义, 李承蔚. 毛细水干湿循环对土遗址风化影响的试验研究[J]. 地下空间与工程学报, 2012, 8(3): 517-525. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201203015.htm
    [13]
    王夏伟. 毛细水对开封城墙的破坏研究[D]. 开封: 河南大学, 2020.

    Wang X W. Study on damage of capillary water to Kaifeng City Wall[D]. Kaifeng: Henan University, 2020 (in Chinese with English abstract).
    [14]
    申静怡, 刘成. 东莞地区红砂岩文化遗存病害机理研究[J]. 文物保护与考古科学, 2012, 24(2): 31-37. doi: 10.3969/j.issn.1005-1538.2012.02.007

    Shen J Y, Liu C. Research on deterioration mechanism of the red sandstone cultural relics in Dongguan[J]. Sciences of Conservation and Archaeology, 2012, 24(2): 31-37 (in Chinese with English abstract). doi: 10.3969/j.issn.1005-1538.2012.02.007
    [15]
    任克彬, 王博, 李新明, 等. 毛细水干湿循环作用下土遗址的强度特性与孔隙分布特征[J]. 岩土力学, 2019, 40(3): 962-970. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903015.htm

    Ren K B, Wang B, Li X M, et al. Strength properties and pore-size distribution of earthen archaeological site under dry-wet cycles of capillary water[J]. Rock and Soil Mechanics, 2019, 40(3): 962-970 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903015.htm
    [16]
    王立志, 黄继忠, 任建光, 等. 平遥古城墙毛细水上升控制方法探索性研究[J]. 文物世界, 2016, 30(6): 64-67. doi: 10.3969/j.issn.1009-1092.2016.06.021

    Wang L Z, Huang J Z, Ren J G, et al. Exploratory study on the method of controlling the capillary water rise in the ancient city wall of Pingyao[J]. World of Antiquity, 2016, 30(6): 64-67 (in Chinese). doi: 10.3969/j.issn.1009-1092.2016.06.021
    [17]
    Wang Y, Pei Q, Yang S, et al. Evaluating the condition of sandstone rock-hewn cave-temple façade using in situ non-invasive techniques[J]. Rock Mechanics and Rock Engineering, 2020, 53(12): 1-6.
    [18]
    Ruedrich J, Bartelsen T, Dohrmann R, et al. Moisture expansion as a deterioration factor for sandstone used in buildings[J]. Environmental Earth Sciences, 2011, 63(7/8): 1545-1564.
    [19]
    汪东云, 张赞勋, 付林森, 等. 宝顶山石窟岩体风化破坏的作用因素分析[J]. 工程地质学报, 1994, 2(2): 54-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ402.006.htm

    Wang D Y, Zhang Z X, Fu L S, et al. Analyses of factors affecting destruction of rockmass by weathering in Baodingshan Grotto[J]. Journal of Engineering Geology, 1994, 2(2): 54-65 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ402.006.htm
    [20]
    王金华. 大足石刻保护[M]. 北京: 文物出版社, 2009.

    Wang J H. Dazu grottos conservation[M]. Beijing: Cultural Relics Press, 2009 (in Chinese).
    [21]
    马淑芝, 方云, 贾洪彪, 等. 云冈石窟第9、10窟列柱地质病害特征与加固设计[J]. 地质科技情报, 2011, 30(1): 123-126. doi: 10.3969/j.issn.1000-7849.2011.01.022

    Ma S Z, Fang Y, Jia H B, et al. Characters of geological disease and reinforcement design of the 9th and 10th grotto's columniations of Yungang Grottoes[J]. Geological Science and Technology Information, 2011, 30(1): 123-126 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2011.01.022
    [22]
    苏天明, 孙强, 张卫强. 砂岩风化及其工程地质效应[J]. 地质科技情报, 2015, 34(1): 204-209. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501032.htm

    Su T M, Sun Q, Zhang W Q. Sandstone weathering and its engineering geological effects[J]. Geological Science and Technology Information, 2015, 34(1): 204-209 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501032.htm
    [23]
    王伟, 丁黎, 陈小东, 等. 一种改进的通过压汞来计算致密砂岩渗透率经验方法: 以鄂尔多斯盆地姬塬地区长7致密砂岩为例[J]. 地质科技情报, 2018, 37(4): 153-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804021.htm

    Wang W, Ding L, Chen X D, et al. An improved empirical permeability estimator from mercury injection for tight sandstone: A case of Chang 7 tight sandstone in Jiyuan Area of Ordos Basin[J]. Geological Science and Technology Information, 2018, 37(4): 153-157 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804021.htm
    [24]
    梁行洲. 大足石刻砂岩材料风化程度量化评估[D]. 兰州: 兰州大学, 2017.

    Liang X Z. Quantitative assessment of weathering degree of sandstone material in Dazu Rock Carvings[D]. Lanzhou: Lanzhou University, 2017 (in Chinese with English abstract).
    [25]
    European committee for standardization, Conservation of cultural property. Test methods. Determination of water absorption by capillarity: BS EN 15801[S]. London: British Standards Institution, 2009.
    [26]
    许利军, 蔡乐刚, 朱开宇, 等. 卡斯滕量瓶法在优秀历史建筑专项检测中应用[J]. 住宅科技, 2013(10): 60-62. doi: 10.3969/j.issn.1002-0454.2013.10.015

    Xu L J, Cai, L G, Zhu K Y, et al. Application of Karsten Tube method in the special inspection of excellent historical buildings[J]. Housing Science, 2013(10): 60-62 (in Chinese with English abstract). doi: 10.3969/j.issn.1002-0454.2013.10.015
    [27]
    赵留鹏, 张树永. 毛细上升公式的推导方法及其在方形毛细管中的应用[J]. 大学化学, 2016, 31(11): 83-88. doi: 10.3866/pku.DXHX201604031

    Zhao L P, Zhang S Y. Equation deduction for capillary rise and the application in square capillary[J]. University Chemistry, 2016, 31(11): 83-88 (in Chinese with English abstract). doi: 10.3866/pku.DXHX201604031
    [28]
    Zhao H, Ding J, Huang Y, et al. Experimental analysis on the relationship between pore structure and capillary water absorption characteristics of cement-based materials[J]. Structural Concrete, 2019, 20(5): 1750-1762. doi: 10.1002/suco.201900184
    [29]
    Washburn E W. The dynamics of capillary flow[J]. Physical Rev. Diew, 1921, 17(3): 273-283. doi: 10.1103/PhysRev.17.273
    [30]
    Karagiannis N, Karoglou M, Bakolas A, et al. Effect of temperature on water capillary rise coefficient of building materials[J]. Building and Environment, 2016, 106: 402-408. doi: 10.1016/j.buildenv.2016.07.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(335) PDF Downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return