Volume 41 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Meng Jia, Qin Peng, Shi Qipeng, Tan Xianfeng, Zhang Xi. Exploration and study on carbonate thermal reservoirs in fault basins: A case from Yutai Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 38-45. doi: 10.19509/j.cnki.dzkq.2022.0035
Citation: Meng Jia, Qin Peng, Shi Qipeng, Tan Xianfeng, Zhang Xi. Exploration and study on carbonate thermal reservoirs in fault basins: A case from Yutai Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 38-45. doi: 10.19509/j.cnki.dzkq.2022.0035

Exploration and study on carbonate thermal reservoirs in fault basins: A case from Yutai Sag

doi: 10.19509/j.cnki.dzkq.2022.0035
  • Received Date: 29 Sep 2021
    Available Online: 07 Sep 2022
  • Yutai Sag is a Mesozoic synsedimentary fault basin. It is characterized by much fault intersection and massive Ordovician carbonate rock in the deep, which indicates a good prospect of geothermal development. To study the characteristics of carbonate thermal reservoirs in this fault basin and evaluate its geothermal resource potential, a hole with a depth of 2 309.31 m was drilled in Yutai Sag. Through comprehensive logging, productivity testing, hydrochemical analysis, gas composition analysis, and geothermal water 14C age determination, the sources and supply of thermal fluid, heat source storage, and ion migration in the interior of the basin are analyzed.The result shows that the temperature anomaly presented in the geothermal well temperature curve and the fault position characterized by many fractures are consistent, indicating the source direction of geothermal water.The geothermal water with high content of Cl- and Na- is related to halite dissolution. The apparent age of geothermal water is 43.5 ka BP near the confluence of faults in the southeastern Yutai Sag, and the corrected age is 10.752 ka BP which is from the late Quaternary Pleistocene to the early Holocene.The study shows that there are relatively active or young geological structures in Yutai Sag, which are one of the thermal sources of thermal reservoirs. The recoverable geothermal resources of the Ordovician thermal reservoir in the area are approximately 2.12×109 GJ, equivalent to 7.27×107 t of standard coal, implying great resource potential and good prospects for development and utilization.

     

  • loading
  • [1]
    黄旭, 章惠, 汪新伟, 等. 渤海湾盆地南乐地热田特征及其成因分析[J]. 地质科技通报, 2021, 40(5): 71-82. doi: 10.19509/j.cnki.dzkq.2021.0506

    Huang X, Zhang H, Wang X W, et al. Characteristics and mechanism analysis of geothermal field in Nanle Sub-uplift, Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 71-82 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0506
    [2]
    陈墨香, 汪集旸, 邓孝. 中国地热资源: 形成特点和潜力评价[M]. 北京: 科学出版社, 1994.

    Chen M X, Wang J Y, Deng X. Geothermal resources in China-formation characteristics and potential evaluation[M]. Beijing: Science Press, 1994(in Chinese).
    [3]
    康凤新. 山东省地热清洁能源综合评价[M]. 北京: 科学出版社, 2018.

    Kang F X. Comprehensive evaluation of geothermal clean energy in Shandong province[M]. Beijing: Science Press, 2018(in Chinese).
    [4]
    孟甲, 赵跃伦, 史启朋, 等. 浅层地热能供暖在农村的应用前景分析[J]. 节能技术, 2021, 39(2): 169-172. doi: 10.3969/j.issn.1002-6339.2021.02.014

    Meng J, Zhao Y L, Shi Q P, et al. Analysis on the application prospect of shallow geothermal energy heating in Rural Areas[J]. Energy Conservation Technology, 2021, 39(2): 169-172(in Chinese with English abstract). doi: 10.3969/j.issn.1002-6339.2021.02.014
    [5]
    李钟模. 对鱼台盆地的新认识[J]. 盐湖研究, 1996(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ601.001.htm

    Li Z M. A further research on Yutai Basin in Northern Jiangsu Province[J]. Journal of Salt Lake Research, 1996(1): 13-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ601.001.htm
    [6]
    贾元军, 李红阳. 对鲁西南地区鱼台盆地普查找钾的探讨[J]. 河北地质学院学报, 1991, 14(4): 361-368. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX199104005.htm

    Jia Y J, Li H Y. On reconnaissance survey for potassium ore deposits in the Yutai Basin of Southwestern Shandong[J]. Journal of Hebei Institute of Geosciences, 1991, 14(4): 361-368(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX199104005.htm
    [7]
    申文环. 山东省鱼台县王鲁盆地盐矿成矿条件及找矿前景分析[J]. 内蒙古石油化工, 2020, 46(4): 35-37. doi: 10.3969/j.issn.1006-7981.2020.04.010

    Shen W H. Analysis of the metallogenic conditions and prospecting prospects for salt ore in Wanglu Basin in Lutai County of Shandong Province[J]. Inner Mongolia Petrochemical Industry, 2020, 46(4): 35-37(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7981.2020.04.010
    [8]
    徐军祥, 康凤新. 山东省地热资源[J]. 中国地质, 1999, 26(9): 30-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI199909008.htm

    Xu J X, Kang F X. Geothermal resources in Shandong Province[J]. Chinese Geology, 1999, 26(9): 30-31(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI199909008.htm
    [9]
    李肖兰, 杜炤伟, 张玲, 等. 山东省地热资源分布与开发利用研究[J]. 山东国土资源, 2021(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202101005.htm

    Li X L, Du X W, Zhang L, et al. Distribution characteristics and present condition of exploitation and utilization of geothermal resources in Shandong Province[J]. Shandong Land and Resources, 2021(1): 37-43(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202101005.htm
    [10]
    高宗军, 孙智杰, 杨永红, 等. 山东省地热水水化学研究及赋存特征[J]. 科学技术与工程, 2019, 19(20): 85-90. doi: 10.3969/j.issn.1671-1815.2019.20.012

    Gao Z J, Sun Z J, Yang Y H, et al. Occurrence characteristics and hydrochemical characteristics of geothermal water in Shandong Province[J]. Science Technology and Engineering, 2019, 19(20): 85-90(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2019.20.012
    [11]
    刘述敏, 宋洪涛, 梁栋彬, 等. 山东省鱼台县矿产资源综合调查报告[R]. 山东兖州: 山东省第二地质矿产勘查院, 1999.

    Liu S M, Song H T, Liang D B, et al. Comprehensive investigation report of Mineral Resources in Yutai County, Shandong Province[R]. Yanzhou Shandong: Shandong Second Geology and Mineral Resources Exploration Institute, 1999(in Chinese with English abstract).
    [12]
    中华人民共和国国家质量监督检验检疫总局. 地热资源地质勘查规范: GB/T 11615-2010[S]. 北京: 中国标准出版社, 2010: 11-12.

    State General Administration of the People's Republic of China for Quality Supervision and Inspection andQuarantine. Geologic exploration standard of geothermal resources: GB/T 11615-2010[S]. Beijing: Standards Press of China, 2010: 11-12(in Chinese).
    [13]
    吴爱民, 马峰, 王贵玲, 等. 雄安新区深部岩溶热储探测与高产能地热井参数研究[J]. 地球学报, 2018, 39(5): 523-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201805002.htm

    Wu A M, Ma F, Wang G L, et al. A study of deep-seated karst geothermal reservoir exploration and Huge capacity geothermal well parameters in Xiongan New Area[J]. Acta Geoscientica Sinica, 2018(5): 523-532(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201805002.htm
    [14]
    王贵玲, 高俊, 张保建, 等. 雄安新区高阳低凸起区雾迷山组热储特征与高产能地热井参数研究[J]. 地质学报, 2020, 94(7): 1970-1980. doi: 10.3969/j.issn.0001-5717.2020.07.006

    Wang G L, Gao J, Zhang B J, et al. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong'an New Area[J]. Acta Geologica Sinica, 2020, 94(7): 1970-1980(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.07.006
    [15]
    Dow Chemical Co., Ltd. FILMTEC reverse Osmosis and Nanofiltration membrane components products and Technical Manual[M]. USA: Dow Chemical Company, 2019: 233.
    [16]
    史启朋, 宋帅良, 孟甲, 等. 山东省菏泽凸起地热田岩溶地热水水化学水平演化特征[J]. 中国岩溶, 2021, 40(2): 310-318. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202102016.htm

    Shi Q P, Song S L, Meng J, et al. Hydrochemical evolution of karst geothermal water in the Heze uplift geothermal field, Shandong Province[J]. Carsologica Sinica, 2021, 40(2): 310-318(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202102016.htm
    [17]
    Kortatsi B K. Hydrochemical framework of groundwater in the Ankobra Basin, Ghana[J]. Aquatic Geochemistry, 2007, 13(1): 41-74. doi: 10.1007/s10498-006-9006-4
    [18]
    齐丽丽. 山东省第三纪盐类矿产沉积主控因素的研究[D]. 山东青岛: 山东科技大学, 2010.

    Qi L L. Study on main factors of Tertiary salt mineral sediment in Shandong Province[D]. Qingdao Shandong: Shandong University of Science and Technology, 2010(in Chinese with English abstract).
    [19]
    Huh Y, Tsoi M Y, Zaitsev A, et al. The fluvial geochemistry of the rivers of eastern Siberia: Ⅰ. Tributaries of the Lena river draining the sedimentary platform of the Siberian Craton[J]. Geochimica et Cosmochimica Acta, 1998, 62(10): 1657-1676. doi: 10.1016/S0016-7037(98)00107-0
    [20]
    Edmunds W M, Ma J, Aeschbach-Hertig W, et al. Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China[J]. Applied geochemistry, 2006, 21(12): 2148-2170. doi: 10.1016/j.apgeochem.2006.07.016
    [21]
    何建华. 疏勒河流域地下水14C年龄校正[D]. 兰州: 兰州大学, 2013.

    He J H. The 14C age correction of the groundwater in the Shule River Basin[D]. Lanzhou: Lanzhou University, 2013(in Chinese with English abstract).
    [22]
    陈宗宇, 齐继祥, 张兆吉, 等. 北方典型盆地同位素水文地质学方法应用[M]. 北京: 科学出版社, 2010.

    Chen Z Y, Qi J X, Zhang Z J, et al. Application of isotope hydrogeological methods in typical basins in North China[M]. Beijing: Science Press, 2010(in Chinese).
    [23]
    Ingerson E, Pearson F J. Estimation of age and rate of motion of groundwater by the 14C-method[J]. Recent Researches in the Fields of Atmosphere, Hydrosphere and Nuclear Geochemistry, 1964: 263-283.
    [24]
    王先彬, 陈践发, 徐胜, 等. 地震区温泉气体的地球化学特征[J]. 中国科学: B辑, 化学, 生命科学, 地学, 1992, 22(8): 849-854. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199208009.htm

    Wang X B, Chen J F, Xu S, et al. Geochemical characteristics of hot spring gas in seismic area[J]. Science in China: Series B, Chemistry, Life Sciences and Geosciences, 1992, 22(8): 849-854(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199208009.htm
    [25]
    侯定远. 地下热水气体成份及其地球化学意义[J]. 水文地质工程地质, 1987, 14(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198701011.htm

    Hou D Y. Gas composition of geothermal water and its geochemical significance[J]. Hydrogeology & Engineering Geology, 1987, 14(1): 37-40(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198701011.htm
    [26]
    冯明扬, 宋汉周, 杨谦, 等. 江苏部分地热水的气体成分和微量元素含量特征及其指示意义[J]. 水文地质工程地质, 2016, 43(1): 164-170. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201601026.htm

    Feng M Y, Song H Z, Yang Q, et al. Characteristics of dissovled gases and trace element in geothermal waters in Jiangsu and their tracing significance[J]. Hydrogeology & Engineering Geology, 2016, 43(1): 164-170(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201601026.htm
    [27]
    朱喜, 张庆莲, 刘彦广. 基于热储法的鲁西平原地热资源评价[J]. 地质科技情报, 2016, 35(4): 172-177. doi: 10.3969/j.issn.1009-6248.2016.04.008

    Zhu X, Zhang Q L, Liu Y G. Evaluation of the geothermal resources in the plain of west Shandong Province[J]. Geological Science and Technology Information, 2016, 35(4): 172-177(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2016.04.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(332) PDF Downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return