Volume 41 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Liu Jun, Gong Wei, Huang Chao, Li Wei, Li Hongyan, Dong Xiaobin, Jiang Shu. Seismic attribute characteristics of an ultradeep fractured-reservoir in the northern section of Shunbei No.5 strike-slip fault zone in Tarim Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 1-11. doi: 10.19509/j.cnki.dzkq.2022.0112
Citation: Liu Jun, Gong Wei, Huang Chao, Li Wei, Li Hongyan, Dong Xiaobin, Jiang Shu. Seismic attribute characteristics of an ultradeep fractured-reservoir in the northern section of Shunbei No.5 strike-slip fault zone in Tarim Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 1-11. doi: 10.19509/j.cnki.dzkq.2022.0112

Seismic attribute characteristics of an ultradeep fractured-reservoir in the northern section of Shunbei No.5 strike-slip fault zone in Tarim Basin

doi: 10.19509/j.cnki.dzkq.2022.0112
  • Received Date: 08 Jan 2021
  • The Shunbei No. 5 strike-slip fault and its associated fractures in Tarim Basin control the formation of reservoirs and impact the migration and accumulation of oil and gas. Selecting appropriate seismic attributes to characterize and describe the spatial distribution of fractured reservoirs plays an important role in fractured reservoir prediction. Due to the seismic resolution of faults and fractures at different scales, it is necessary to use different methods and their combinations to identify fractures at different scales. To further characterize the fractures that associated with strike-slip faults in the Shunbei area in Tarim Basin, this paper compares the capability characterizing faults and fractures of individual seismic attributes and their combined attributes.The seismic attribute comparison shows that the high-precision coherent volume that constrained by dip angle and plane feature attribute can characterize the large-scale faults with fault distances over 40 m.The multi-coherent merge and strain-energy attributes can represent mesoscale fractures with a fault distance of 40-15 m. In addition, fracture-gave gain and thin likelihood enhancer can characterize small-scale fractures with a fault distance less than 15 m.The results of correlation fitting of typical seismic attributes to actual fracture data and fracture density curves that interpreted from EMI imaging logging were ranked.Finally, four seismic attributes including chaos, planes, third component of structural tensor, and frequency division coherence fusion are optimized for fracture density calculation.The calculated results show that the potential reservoirs that associated with the high-density fracture zone is mainly located within 1.5 km of the transpression section of the fault in the upper section of the lower to middle Ordovician Yingshan Formation.

     

  • loading
  • [1]
    焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm

    Jiao F Z. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm
    [2]
    Han X Y, Deng S, Tang L J, et al. Geometry, kinematics and displacement characteristics of strike-slip faults in the northern slope of Tazhong uplift in Tarim Basin: A study based on 3D seismic data[J]. Marine and Petroleum Geology, 2017, 88: 410-427. doi: 10.1016/j.marpetgeo.2017.08.033
    [3]
    He D F, Zhou X Y, Yang H J, et al. Formation mechanismand tectonic types of intracratonic paleo-uplifts in the Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2): 207-221.
    [4]
    Zhao R, Deng S, Yun L, et al. Description of the reservoir along strike-slip fault zones in China T-Sh oilfield, Tarim Basin[J]. Carbonates and Evaporites, 2020, 36(1): 1-12.
    [5]
    Huang T Z. Structural interpretation and petroleum exploration targets in northern slope of middle Tarim Basin[J]. Petroleum Geology& Experiment, 2014, 36(3): 257-267.
    [6]
    邬光辉, 成丽芳, 刘玉魁, 等. 塔里木盆地寒武-奥陶系走滑断裂系统特征及其控油作用[J]. 新疆石油地质, 2011, 32(3): 239-243. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201103008.htm

    Wu G H, Cheng L F, Liu Y K, et al. Strike-slip fault system of the Cambrian-Ordovician and its oil-controlling effect in Tarim Basin[J]. Xinjiang Petroleum Geology, 2011, 32(3): 239-243(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201103008.htm
    [7]
    John H M, R William K, Eugene E W, et al. Investigating fault continuity associated with geologic carbon storage planning in the Illinois Basin[J]. Greenhalgh, 2014, 2(1): 151-162.
    [8]
    李宗杰, 杨子川, 李海英, 等. 顺北沙漠区超深断溶体油气藏三维地震勘探关键技术[J]. 石油物探, 2020, 59(2): 283-294. doi: 10.3969/j.issn.1000-1441.2020.02.015

    Li Z J, Yang Z C, Li H Y, et al. Three-dimensional seismic exploration method for ultra-deep fault-related dissolution reservoirs in the Shunbei desert area[J]. Geophysical Prospecting for Petroleum, 2020, 59(2): 283-294(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2020.02.015
    [9]
    苑雅轩. 顺北5号北段走滑断裂特征及其控储作用研究[D]. 北京: 中国地质大学(北京), 2020.

    Yuan Y X. Study on the characteristics of strike-slip faults in the north section of No. 5 Shunbei and its controlling and storage effect[D]. Beijing: China University of Geosciences(Beijing), 2020(in Chinese with English abstract).
    [10]
    高金栋, 周立发, 冯乔, 等. 储层构造裂缝识别及预测研究进展[J]. 地质科技情报, 2018, 37(4): 158-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804022.htm

    Gao J D, Zhou L F, Feng Q, et al. Progress in reservoir structural fracture characterization and Prediction[J]. Geological Science and Technology Information, 2018, 37(4): 158-166(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804022.htm
    [11]
    何松林, 张小兵. 塔里木盆地塔北地区T74不整合面古构造演变过程[J]. 断块油气田, 2019, 26(4): 409-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201904002.htm

    He S L, Zhang X B. Paleostucture evolution process of T74 unconformity in Tabei area, Tarim Basin[J]. Fault-Block Oil & Gas Field, 2019, 26(4): 409-414(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201904002.htm
    [12]
    张延玲, 杨长春, 贾曙光. 地震属性技术的研究和应用[J]. 地球物理学进展, 2005, 20(4): 1129-1133. doi: 10.3969/j.issn.1004-2903.2005.04.036

    Zhang Y L, Yang C C, Jia S G. The application of the seismic attributes[J]. Progress in Geophysics, 2005, 20(4): 1129-1133(in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2005.04.036
    [13]
    Zhang Y F, Tan F, Qu H Z, et al. Karst monadnock fine characterization and reservoir control analysis: A case from Ordovician weathering paleokarst reservoirs in Lungu area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(5): 758-769. doi: 10.1016/S1876-3804(17)30086-1
    [14]
    Fernando A N, Zahrani M S, Bremkamp S W. Detection of potential fractures and small faults using seismic attributes[J]. Leading Edge, 2004, 23(9): 903-906. doi: 10.1190/1.1803500
    [15]
    Zhang X X, Yu J J, Li N Y. Multi-scale fracture prediction and characterization method of a fractured carbonate reservoir[J]. Journal of Petroleum Exploration and Production Technology, 2021, 11(1): 191-202. doi: 10.1007/s13202-020-01033-w
    [16]
    Jose N M, Qiang J, María G. Fracture characterization and modeling of karsted carbonate reservoirs: A case study in Tahe oilfield, Tarim Basin (western China)[J]. Marine and Petroleum Geology, 2020, 112: 104104. doi: 10.1016/j.marpetgeo.2019.104104
    [17]
    刘振峰, 曲寿利, 孙建国. 地震裂缝预测技术研究进展[J]. 石油物探, 2012, 51(2): 191-198, 106. doi: 10.3969/j.issn.1000-1441.2012.02.013

    Liu Z F, Qu S L, Sun J G. Progress of seismic fracture characterization technology[J]. Geophysical Prospecting for Petroleum, 2012, 51(2): 191-198, 106(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2012.02.013
    [18]
    刘敬寿, 丁文龙, 肖子亢, 等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展, 2019, 34(6): 2283-2300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm

    Liu J S, Ding W L, Xiao Z K, et al. Advances in comprehensive characterization and prediction of reservoir fractures[J]. Progress in Geophysics, 2019, 34(6): 2283-2300(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm
    [19]
    Li Y Q, Sun J F, Wei H H, et al. Architectural features of fault-controlled karst reservoirs in the Tahe Oilfield[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106208. doi: 10.1016/j.petrol.2019.106208
    [20]
    姜秀清. 储层地震属性优化及属性体综合解释[D]. 广州: 中国科学院广州地球化学研究所, 2006.

    Jiang X Q. The Optimization of Reservoir Seismic Attributes and the Comprehensive Interpretation of Attribute-body[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2006(in Chinese with English abstract).
    [21]
    廖龙. 基于地震相干体数据的裂缝及断层检测方法研究[D]. 成都: 电子科技大学, 2020.

    Liao L. Fracture and fault detection based on seismic coherence data[D]. Chengdu: University of Electronic Science and Technology of China, 2020(in Chinese with English abstract).
    [22]
    王震, 文欢, 邓光校, 等. 塔河油田碳酸盐岩断溶体刻画技术研究与应用[J]. 石油物探, 2019, 58(1): 149-154. doi: 10.3969/j.issn.1000-1441.2019.01.017

    Wang Z, Wen H, Deng G X, et al. Fault-karst characterization technology in the Tahe Oilfield, China[J]. Geophysical Prospecting for Petroleum, 2019, 58(1): 149-154(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2019.01.017
    [23]
    Zhao C Q, Zhou Y B, Li Y, et al. Application of gradient structure tensor method in CBM fracture identification and sweet spot prediction[J]. Arabian Journal of Geosciences, 2019, 12(20): 1-13.
    [24]
    韩磊, 张宏, 王劲松, 等. 分频相干技术在复杂断裂解释中的应用[J]. 复杂油气藏, 2016, 9(4): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201604005.htm

    Han L, Zhang H, Wang J S, et al. Discrete frequency coherency technology for interpreting complicated faults and its application[J]. Complex Hydrocarbon Reservoirs, 2016, 9(4): 16-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201604005.htm
    [25]
    李飞跃, 杨海长, 纪沫, 等. 频倾角相干融合技术在琼东南盆地深水区断裂解释中的应用[J]. 石油物探, 2020, 59(6): 918-926. doi: 10.3969/j.issn.1000-1441.2020.06.010

    Li F Y, Yang H Z, Ji M. Application of a frequency-divided dip coherency fusion for the fracture interpretation in the deep waters of the Qiongdongnan Basin[J]. Geophysical Prospecting for Petroleum, 2020, 59(6): 918-926(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2020.06.010
    [26]
    尹川, 杜向东, 赵汝敏, 等. 小波分频倾角相干在复杂断裂解释中的应用[J]. 石油地球物理勘探, 2015, 50(2): 346-350. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201502026.htm

    Yin C, Du X D, Zhao R M, et al. Dip-steering similarity based on wavelet decomposition in complex fault interpretation[J]. Oil Geophysical Prospecting, 2015, 50(2): 346-350(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201502026.htm
    [27]
    Zhao R, Zhao T, Kong Q F, et al. Relationship between fractures, stress, strike-slip fault and reservoir productivity, China Shunbei oil field, Tarim Basin[J]. Carbonates and Evaporites, 2020, 35(3): 1-14.
    [28]
    丁文龙, 樊太亮, 黄晓波, 等. 塔里木盆地塔中地区上奥陶统古构造应力场模拟与裂缝分布预测[J]. 地质通报, 2011, 30(4): 588-594. doi: 10.3969/j.issn.1671-2552.2011.04.016

    Ding W L, Fan T L, Hang X B, et al. Upper Ordovician paleo tectonic stress field simulating and fracture distribution forecasting in Tazhong area of Tarim Basin[J]. Geological Bulletin of China, 2011, 30(4): 588-594(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2011.04.016
    [29]
    王月蕾, 陈学国, 于洋, 等. 基于应力场分析裂缝预测技术在车排子地区石炭系火成岩储层中的应用[J]. 地质科技情报, 2018, 37(1): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801010.htm

    Wang Y L, Chen X G, Yu Y, et al. Crack prediction technology based on stress field analysis of the Carboniferous igneous reservoirs in Chepaizi area[J]. Geological Science and Technology Information, 2018, 37(1): 74-78(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801010.htm
    [30]
    马妮, 印兴耀, 宗兆云, 等. 基于曲率属性的构造应力预测方法[J]. 石油地球物理勘探, 2020, 55(3): 643-650. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202003020.htm

    Ma N, Yin X Y, Zong Z Y. Tectonic stress prediction method based on curvature attribute[J]. Oil Geophysical Prospecting(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202003020.htm
    [31]
    马德波, 赵一民, 张银涛, 等. 最大似然属性在断裂识别中的应用: 以塔里木盆地哈拉哈塘地区热瓦普区块奥陶系走滑断裂的识别为例[J]. 天然气地球科学, 2018, 29(6): 817-825. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201806008.htm

    Ma D B, Zhao Y M, Zhang Y T, et al. Application of maximum likelihood attribute to fault identification: A case study of Rewapu block in Halahatang area, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2018, 29(6): 817-825(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201806008.htm
    [32]
    王鹏, 刘军, 顾汉明. 不连续性属性增强技术在顺北地区断控不同尺度裂缝检测中的应用[J]. 工程地球物理学报, 2019, 16(2): 131-137. doi: 10.3969/j.issn.1672-7940.2019.02.001

    Wang P, Liu J, Gu H M. The Application of enhancement for seismic discontinuity attributes to detection of fracture with different scales in Shunbei area[J]. Chinese Journal of Engineering Geophysics, 2019, 16(2): 131-137(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7940.2019.02.001
    [33]
    王震, 文欢, 胡文革. 塔河油田碳酸盐岩缝洞空间位置预测方法研究[J]. 工程地球物理学报, 2019, 16(4): 433-438. doi: 10.3969/j.issn.1672-7940.2019.04.002

    Wang Z, Wen H, Hu W G. Study on spatial location prediction method of fractured- vuggy carbonate reservoir in Tahe Oilfield[J]. Chinese Journal of Engineering Geophysics, 2019, 16(4): 433-438(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7940.2019.04.002
    [34]
    赵迎月, 顾汉明, 李宗杰, 等. Wigner-Ville高阶时频谱及其在塔中奥陶系缝洞型储层预测中的应用[J]. 石油地球物理勘探, 2010, 45(5): 688-694. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201005014.htm

    Zhao Y Y, Gu H M, Li Z J, et al. Wigner-Ville higher-order time & frequency spectrum and its application in prediction of Ordovician fractured-vuggy reservoir in Tazhong area[J]. Oil Geophysical Prospecting, 2010, 45(5): 688-694(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201005014.htm
    [35]
    袁联生. 塔里木盆地玉北地区中-下奥陶统断溶体识别[J]. 石油物探, 2020, 59(4): 628-636. doi: 10.3969/j.issn.1000-1441.2020.04.013

    Yuan L S. Identifying fault-karst reservoirs in Middle-Lower Ordovician carbonates in the Yubei area, Tarim Basin, China[J]. Geophysical Prospecting for Petroleum, 2020, 59(4): 628-636(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2020.04.013
    [36]
    Wang C, Lu Y C, Huang H G, et al. New seismic attribute technology for predicting dissolved pore-fracture of deeply buried platform margin reef-beach system in Northeast Sichuan Basin, China[J]. Journal of Earth Science, 2015, 26(3): 373-383. doi: 10.1007/s12583-015-0540-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(817) PDF Downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return