Volume 41 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Lin Yang, Li Jing, Xia Wenhao. Study on coal origin traceability technology based on infrared spectrum[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 317-328. doi: 10.19509/j.cnki.dzkq.2022.0124
Citation: Lin Yang, Li Jing, Xia Wenhao. Study on coal origin traceability technology based on infrared spectrum[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 317-328. doi: 10.19509/j.cnki.dzkq.2022.0124

Study on coal origin traceability technology based on infrared spectrum

doi: 10.19509/j.cnki.dzkq.2022.0124
  • Received Date: 12 May 2021
    Available Online: 07 Sep 2022
  • With the increasing dependence of China's coal on the outside world, the problem of coal import adulteration and coal filling is becoming increasingly serious, so it is imperative to establish the accurate, fast, convenient, safe, and environmentally friendly technology of coal origin tracing. In recent years, infrared spectroscopy has been widely used in the field of origin identification in medicine, food, industry and so on. The infrared spectrum contains abundant informationon composition and structure, and the differencesin composition and molecular structure of coals among different countries and regions can be used as the characteristic indications of source tracing. Therefore, in this paper, 30 imported coal samples from 5 countries were collected and analyzed by Fourier Transform Infrared (FTIR) spectrometry, and the characteristics of coal samples from different producing areas were analyzed using principal component analysis, discriminant analysis, and other chemometrics methods.A coal source tracing model based on infrared spectral characteristic information in three countries was established, and its accuracy was verified. The main conclusions are as follows: ①There are differences in the shapes of infrared spectra curves and the types of functional groups in coals from different countries, and the number, position, and intensity of the absorption peaks of the same functional group were also different. ②Based on the infrared spectra data of 23 coal samples from 3 countries, the characteristic information database of functional groups was established, and the principal component analysis and discriminant analysis were carried out for the chemometrics analysis. The traceability models of coal origin in Russia, Indonesia, and Australia were established. ③The accuracy of the origin tracing model is verified by coal samples from known origins, and the accuracy of the result is 100%. The more samples there are, the higher the accuracy and the better the traceability effect of the model.

     

  • loading
  • [1]
    兰君. 中国煤炭产业转型升级与空间布局优化研究[D]. 北京: 中国地质大学(北京), 2019.

    Lan J. Research on the transformation and upgrading of China's coal industry and spatial layout optimization[D]. Beijing: China University of Geosciences (Beijing), 2019(in Chinese with English abstract).
    [2]
    罗陨飞, 姜英, 涂华. 我国煤炭进口形势与进口煤质量分析与研究[J]. 煤质技术, 2011, 26(2): 1-5. doi: 10.3969/j.issn.1007-7677.2011.02.001

    Luo Y F, Jiang Y, Tu H. Analysis and research on China's coal import situation and imported coal quality[J]. Coal Quality Technology, 2011, 26(2): 1-5(in Chinese with English abstract). doi: 10.3969/j.issn.1007-7677.2011.02.001
    [3]
    马俊华. 2013煤炭博弈谁是赢家[J]. 现代工业经济和信息化, 2014, 4(1): 66-67. doi: 10.3969/j.issn.2095-0748.2014.01.030

    Ma J H. Who is the winner in the coal game in 2013[J]. Modern Industrial Economy and Informatization, 2014, 4(1): 66-67(in Chinese with English abstract). doi: 10.3969/j.issn.2095-0748.2014.01.030
    [4]
    陈启昕, 叶海峰. 2015年福建省进口煤炭质量状况分析[J]. 能源与环境, 2016, 20(5): 17-22. doi: 10.3969/j.issn.1672-9064.2016.05.008

    Chen Q X, Ye H F. Quality analysis of imported coal in Fujian Province in 2015[J]. Energy and Environment, 2016, 20(5): 17-22(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9064.2016.05.008
    [5]
    郭振华, 陈换美. 食品溯源技术研究现状及分析[J]. 新疆农机化, 2017, 21(6): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-XJNJ201706015.htm

    Guo Z H, Chen H M. Research status and analysis of food traceability technology[J]. Xinjiang Agricultural Mechanization, 2017, 21(6): 34-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJNJ201706015.htm
    [6]
    马慧鋆, 余冰雪, 李妍, 等. 食品溯源技术研究进展[J]. 食品与发酵工业, 2017, 43(5): 277-284. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX201705044.htm

    Ma H Y, Yu B X, Li Y, et al. Research progress of food traceability technology[J]. Food and Fermentation Industry, 2017, 43 (5): 277-284(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX201705044.htm
    [7]
    谭莉, 李汴生. 农产品与加工食品产地溯源技术研究进展[J]. 农产品加工: 学刊, 2014, 18(15): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-NCJX201415029.htm

    Tan L, Li B S. Research progress on Origin Traceability Technology of agricultural products and processed food[J]. Agricultural Products Processing: Academic Journal, 2014, 18(15): 81-85(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NCJX201415029.htm
    [8]
    袁玉伟, 胡桂仙, 邵圣枝, 等. 茶叶产地溯源与鉴别检测技术研究进展[J]. 核农学报, 2013, 27(4): 452-457. https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201304009.htm

    Yuan Y W, Hu G X, Shao S Z, et al. Research progress of tea origin traceability and identification and detection technology[J]. Journal of Nuclear Agriculture, 2013, 27(4): 452-457(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201304009.htm
    [9]
    周广军, 金志刚, 林雪. 食品溯源系统主要技术浅析[J]. 轻工标准与质量, 2018, 38(3): 20-21. https://www.cnki.com.cn/Article/CJFDTOTAL-QGBZ201803015.htm

    Zhou G J, Jin Z G, Lin X. Analysis on main technologies of food traceability system[J]. Light Industry Standard and Quality, 2018, 38(3): 20-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-QGBZ201803015.htm
    [10]
    赵海燕. 小麦产地矿物元素指纹信息特征研究[D]. 北京: 中国农业科学院, 2013.

    Zhao H Y. Study on fingerprint information characteristics of mineral elements in wheat producing areas[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013(in Chinese with English abstract).
    [11]
    钱丽丽, 于果, 迟晓星, 等. 农产品产地溯源技术研究进展[J]. 食品工业, 2018, 39(1): 246-249. https://www.cnki.com.cn/Article/CJFDTOTAL-SPGY201801065.htm

    Qian L L, Yu G, Chi X X, et al. Research progress on origin traceability technology of agricultural products[J]. Food Industry, 2018, 39(1): 246-249(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SPGY201801065.htm
    [12]
    Chen H, Tan C, Lin Z. Identification of ginseng according to geographical origin by near-infraredtroscopy and pattern recognition[J]. Vib. Spectrosc, 2020, 110: 103149. doi: 10.1016/j.vibspec.2020.103149
    [13]
    Li B X, Wei Y H, Duan H G, et al. Discrimination of the geographical origin of Codonopsis pilosulausingnear infrared diffuse reflection spectroscopy coupled with random forests and k-nearest neighbor methods[J]. Vib. Spectrosc, 2012, 62: 17-22. doi: 10.1016/j.vibspec.2012.05.001
    [14]
    Duan X J, Zhang D L, Nie L, et al. Rapid discrimination of geographical origin and evaluation of antioxidant activity of Salvia miltiorrhiza var alba by Fourier transform near infrared spectroscopy[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2014, 122: 751-757. doi: 10.1016/j.saa.2013.12.003
    [15]
    Liu L, Zuo Z T, Wang Y Z, et al. A fast multi-source information fusion strategy based on FTIR spectroscopy for geographical authentication of wild Gentiana rigescens[J]. Microchemical Journal, 2020, 159: 105360. doi: 10.1016/j.microc.2020.105360
    [16]
    Kwon Y K, Jie E Y, Sartie A, et al. Rapid metabolic discrimination and prediction of dioscin content from African yam tubers using Fourier transform-infrared spectroscopy combined with multivariate analysis[J]. Food Chem., 2015, 166: 389-396. doi: 10.1016/j.foodchem.2014.06.035
    [17]
    Wu X M, Zhang Q Z, Wang Y Z. Traceability the provenience of cultivated Paris polyphylla Smith var. yunnanensis using ATR-FTIRspectroscopy combined with chemometrics[J]. Spectroc. ActaPt. A-Molec. Biomolec. Spectr., 2019, 212: 132-145. doi: 10.1016/j.saa.2019.01.008
    [18]
    李明, 陈凡, 雷萌, 等. 基于LVQ与SVM算法的近红外光谱煤产地鉴别[J]. 光谱学与光谱分析, 2016, 36(9): 2793-2797. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201609017.htm

    Li M, Chen F, Lei M, et al. Identification of coal producing areas by near infrared spectroscopy based on LVQ and SVM algorithm[J]. Spectroscopy and Spectral Analysis, 2016, 36 (9): 2793-2797(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201609017.htm
    [19]
    李霞, 曾凡桂, 王威, 等. 低中煤级煤结构演化的FTIR表征[J]. 煤炭学报, 2015, 40(12): 2900-2908. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201512021.htm

    Li X, Zeng F G, Wang W, et al. FTIR characterization of structural evolution of low and medium coal grade[J]. Journal of China Coal Society, 2015, 40(12): 2900-2908(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201512021.htm
    [20]
    张科, 姚素平, 胡文瑄, 等. 煤红外光谱的精细解析及其煤化作用机制[J]. 煤田地质与勘探, 2009, 37(6): 8-13. doi: 10.3969/j.issn.1001-1986.2009.06.003

    Zhang K, Yao S P, Hu W X, et al. Fine resolution of infrared spectrum of coal and its mechanism of coalification[J]. Coalfield Geology and Exploration, 2009, 37 (6): 8-13(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1986.2009.06.003
    [21]
    刘阳, 王光华, 李文兵, 等. 东胜褐煤吡啶抽提的FTIR谱及GC/MS研究[J]. 煤炭技术, 2017, 36(3): 304-306. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201703116.htm

    Liu Y, Wang G H, Li W B, et al. FTIR and GC/MS study on pyridine extraction of Dongsheng lignite[J]. Coal Technology, 2017, 36 (3): 304-306(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201703116.htm
    [22]
    张代钧, 鲜学福. 红外光谱法研究煤大分子结构[J]. 光谱学与光谱分析, 1989, 9(3): 17-19, 24. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN198903004.htm

    Zhang D J, Xian X F. Study on macromolecular structure of coal by infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 1989, 9(3): 17-19, 24(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN198903004.htm
    [23]
    徐鑫. 近30年来俄罗斯煤炭工业发展及未来趋势[J]. 中国煤炭, 2021, 47(2): 102-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME202102016.htm

    Xu X. Development and future trend of Russian coal industry in recent 30 years[J]. China Coal, 2021, 47(2): 102-109(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME202102016.htm
    [24]
    陈景阳, 蔡文杰, 张洋, 等. 俄罗斯主要含油气盆地油气地质特征与成藏模式[J]. 地质科技情报, 2017, 36(5): 76-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705011.htm

    Chen J Y, Cai W J, Zhang Y, et al. Geological characteristics and reservoir formation patterns of oil and gas in major oil-bearing basins in Russia[J]. Geological Science and Technology Information, 2017, 36(5): 76-84(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705011.htm
    [25]
    Yanovsky A B. Main trends and prospects of the coal industry development in Russia[J]. Ugol, 2017(8): 10-16.
    [26]
    Tarazanov I, Gubanov D A. Russia's coal industry performance for January-December, 2019[J]. Ugol, 2020(3): 54-69.
    [27]
    梁富康, 苏新旭. 印度尼西亚的煤炭资源及开发前景[J]. 中国煤炭, 2019, 45(4): 128-132. doi: 10.3969/j.issn.1006-530X.2019.04.024

    Liang F K, Su X X. Coal resources and development prospects in Indonesia[J]. China Coal, 2019, 45 (4): 128-132(in Chinese with English abstract). doi: 10.3969/j.issn.1006-530X.2019.04.024
    [28]
    赵风顺, 华杉, 吴昊, 等. 印度尼西亚苏门答腊岛浅成低温热液型金(银)矿产资源总量预测[J]. 地质科技通报, 2021, 40(1): 119-131. doi: 10.19509/j.cnki.dzkq.2021.0107

    Zhao F S, Hua S, Wu H, et al. Prediction of total mineral resources of asami low-temperature hydrothermal gold (silver) in Sumatra, Indonesia[J]. Bulletin of Geology and Science and Technology, 2021, 40(1): 119-131(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0107
    [29]
    Mulyono J. Indonesian coal industry outlook[Z]. Tokyo: Indonesian Japan Coal Policy Dialogue and Coal Seminar, 2009: 1-29.
    [30]
    Belkin H E, Tewalt S J, Hower J C, et al. Geochemistry and petrology of selected coal samples from sumatra, kaliman-tan, sulawesi, and papua, indonesia[J]. Internationalournal of Coal Geology, 2009: 260-268.
    [31]
    蓝晓梅, 李艳强. 澳大利亚煤炭工业发展趋势[J]. 中国煤炭, 2021, 47(2): 89-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME202102015.htm

    Lan X M, Li Y Q. Development trend of Australian coal industry[J]. China Coal, 2021, 47(2): 89-101(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME202102015.htm
    [32]
    黄科. 澳大利亚煤炭行业优势仍在[N]. 期货日报, 2018-01-16(3).

    Huang K. Advantages of Australian coal industry still exist. Futures daily, January 16, 2018 (3)(in Chinese).
    [33]
    Falkner A J, 李蕙生. 澳大利亚鲍恩盆地三角洲和冲积层序的定量分析[J]. 地质科技情报, 1991, 10(4): 97-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199104033.htm

    Falkner A J, Li H S. Quantitative analysis of delta and alluvial sequence in Bowen Basin, Australia[J]. Geological Science and Technology Information, 1991, 10(4): 97-96(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199104033.htm
    [34]
    Niu X, Yang X H, Yan D T, et al. Development background of Mesozoic high-quality source rocks: Evidence from microfossils in North Carnarvon Basin, Australia[J]. Petroleum Research, 2019, 4(1): 71-83. doi: 10.1016/j.ptlrs.2019.01.005
    [35]
    Granato D, Santos J S, Escher G B, et al. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective[J]. Trends Food Sci. Technol., 2018, 72: 83-90. doi: 10.1016/j.tifs.2017.12.006
    [36]
    Liu Y, Xia Z Z, Yao L Y, et al. Discriminating geographic origin of sesame oils and determining lignans by near-infrared spectroscopy combined with chemometric methods[J]. Food Compos. Anal., 2019, 84: 103-327.
    [37]
    Liu L, Cozzolono D, Cynkar W U, et al. Preliminary study on the application of visible-near infrared spectroscopy and chemometrics to classify Riesling wines from different countries[J]. Food Chemistry, 2008, 106(2): 781-786. doi: 10.1016/j.foodchem.2007.06.015
    [38]
    张代钧, 鲜学福. 煤大分子中官能团的红外光谱分析[J]. 重庆大学学报: 自然科学版, 1990, 10(5): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE199005010.htm

    Zhang D J, Xian X F. Infrared spectrum analysis of functional groups in coal macromolecules[J]. Journal of Chongqing University: Natural Science Edition, 1990, 10(5): 63-67(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE199005010.htm
    [39]
    Ganz H, Kalkreuth W. Application of infrared spectroscopy to the classification of kerogen types and the evolution of source rock and oil-shale potentials[J]. Fuel, 1987, 66(5): 708-711. doi: 10.1016/0016-2361(87)90285-7
    [40]
    郑庆荣, 曾凡桂, 张世同. 中变质煤结构演化的FT-IR分析[J]. 煤炭学报, 2011, 36(3): 481-486. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201103025.htm

    Zheng Q R, Zeng F G, Zhang S T. FT-IR analysis of structural evolution of medium-metamorphic coal[J]. Journal of China Coal Society, 2011, 36(3): 481-486(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201103025.htm
    [41]
    Ibarra J V, Miliner R, Bonet A J. FT-IR investigation on char formation during the early stages of coal pyrolysis[J]. Fuel, 1994, 73(6): 918-924.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(226) PDF Downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return