Volume 41 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Pu Junbing. Earth's critical zone and karst critical zone: Structure, characteristic and bottom boundary[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 230-241. doi: 10.19509/j.cnki.dzkq.2022.0191
Citation: Pu Junbing. Earth's critical zone and karst critical zone: Structure, characteristic and bottom boundary[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 230-241. doi: 10.19509/j.cnki.dzkq.2022.0191

Earth's critical zone and karst critical zone: Structure, characteristic and bottom boundary

doi: 10.19509/j.cnki.dzkq.2022.0191
  • Received Date: 20 Jul 2022
    Available Online: 10 Nov 2022
  • Critical zone science has become an important research area in Surface-Earth system science, representing a future new concept and developing trend in Earth system science. The karst critical zone, a unique type, covers approximately 15.2% of the global ice-free continental land, which is a typical case and represents the Earth's critical zone. However, there is still a lack of a unified understanding of the scientific connotation of the karst critical zone (KCZ) and a lack of related discussions on the structure, characteristics and lower boundary of the KCZ at present. On the basis of reviewing the history of the scientific development of the Earth's critical zone and summarizing its main characteristics, this study sorts out the background and development processes of the concept and summarizes the characteristics of the KCZ. The bottom boundary of the KCZ, which is still controversial, is analyzed and discussed, and the further development direction of the KCZ is also analyzed. These results show that the KCZ is a unique type of Earth's critical zone shaped by material circulation and energy flow at the interface of the lithosphere, hydrosphere, atmosphere, biosphere as well as pedosphere in soluble rock areas. The spatial span of the KCZ ranges from the vegetation canopy to the lower boundary of the karst aquifer in the soluble rock area, including the vegetation layer, soil layer, epikarst, vadose zone and saturated zone, which are sensitive to environmental changes and have surface and subsurface double geological structures and special geochemical processes characterized by coupling cycles of carbon, water and calcium. By comparison, the KCZ has eight following characteristics: active involvement of carbonate rock in the material cycle, sensitive response to external environmental changes, multilayer hydrogeological structures, strong horizontal spatial heterogeneity, large underground space network, large-span biota structure, unique ecohydrological processes with carbonate rock water-vegetation interaction as well as varying lateral boundary controlled by subsurface divide change. The bottom boundary of the KCZ is the depth at which the groundwater recharged by precipitation has no influence on the dissolution of carbonate minerals (calcite, dolomite, etc.) and has no ability to further dissolve carbonate minerals (calcite, dolomite, etc.) in a certain range below the surface. According to the development trend of the disciplines and national strategic demands, further attention should be paid to the following four directions: the structure, formation and evolution mechanisms of different types of the KCZ; the ecological service function and regional sustainable development in degraded karst ecological zones; the impacts of engineering activities on the structure, attributes and evolution process of the KCZ; and the coupling process between climate change and the change in the structure, function and attributes of the KCZ.

     

  • loading
  • [1]
    Richter D D, Mobley M L. Monitoring Earth's critical zone[J]. Science, 2009, 326: 1067-1068. doi: 10.1126/science.1179117
    [2]
    National Research Council(NRC). Basic research opportunities in Earth science[M]. Washington DC: National Academy Press, 2001.
    [3]
    Banwart S, Chorover J, Gaillardet J, et al. Sustaining Earth's critical zone basic science and interdisciplinary solutions for global challenges[M]. Sheffield: University of Sheffield, UK, 2013.
    [4]
    安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201612004.htm

    An P J, Zhang Z Q, Wang L W. Review of Earth critical zone research[J]. Advances in Earth Science, 2016, 31(12): 1228-1234(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201612004.htm
    [5]
    杨建锋, 张翠关. 地球关键带: 地质环境研究的新框架[J]. 水文地质工程地质, 2014, 41(3): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403020.htm

    Yang J F, Zhang C G. Earth's critical zone: A holistic framework for geo-environmental researches[J]. Hydrogeology & Engineering Geology, 2014, 41(3): 98-104(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403020.htm
    [6]
    李小雁, 马育军. 地球关键带科学与水文土壤学研究进展[J]. 北京师范大学学报: 自然科学版, 2016, 52(6): 731-737. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201606010.htm

    Li X Y, Ma Y J. Advances in Earth's critical zone science and hydropedology[J]. Journal of Beijing Normal University: Natural Science Edition, 2016, 52(6): 731-737(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201606010.htm
    [7]
    王立伟, 张志强, 安培浚, 等. 基于文献计量的地球关键带研究态势分析[J]. 世界科技研究与发展, 2017, 39(4): 202-208. doi: 10.16507/j.issn.1006-6055.2017.03.015

    Wang L W, Zhang Z Q, An P J. Bibliometrical analysis of Earth critical zone research[J]. World Sci-Tech. R. & D., 2017, 39(4): 202-208(in Chinese with English abstract). doi: 10.16507/j.issn.1006-6055.2017.03.015
    [8]
    Lin H. Earth's critical zone and hydropedology: Concepts, characteristics and advances[J]. Hydrology and Earth System Sciences, 2010, 14(1): 25-45. doi: 10.5194/hess-14-25-2010
    [9]
    刘丛强. 关键带科学(Critical Zone Science)与未来表层地球系统科学(Surface-Earth System Sciences)研究[C]//国家自然科学基金委员会 & 中国科学院. 第114期双清论坛和第35期科学与技术前沿论坛"地球关键带科学"会议摘要集. 贵阳: 中国科学院地球化学研究所, 2014.

    Liu C Q. Researches on critical zone science and future surface-earth system sciences[C]// NSFC & CAS. Abstracts of the 114th Shuangqing forum & the 35th frontier forum of Science and Technology on Earth's critical zone. Guiyang: Institute of Geochemistry, CAS, 2014(in Chinese).
    [10]
    Goldscheider N, Chen Z, Auler A S, et al. Global distribution of carbonate rocks and karst water resources[J]. Hydrogeology Journal, 2020, 28(5): 1661-1677. doi: 10.1007/s10040-020-02139-5
    [11]
    袁道先. 我国岩溶资源环境领域的创新问题[J]. 中国岩溶, 2015, 34(2): 98-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201502002.htm

    Yuan D X. Scientific innovation in karst resources and environment research field of China[J]. Carsologica Sinca, 2015, 34(2): 98-100(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201502002.htm
    [12]
    Brantley S L, White T S, White A F, et al. Frontiers in exploration of the critical zone: Report of a workshop sponsored by the National Science Foundation(NSF), Oct 24-26, Dewark, DE[M]. [S. l. ]: [s. n. ], 2006.
    [13]
    Giardino J R, Houser C. Introduction to the critical zone[C]//Giardino J R, Houser C. Principles and dynamics of the critical zone. Amsterdam, Netherland: Elseviser, 2015.
    [14]
    Gallagher K T. Core science systems: Mission overview[R]. U.S. Geological Survey Fact Sheet, 2012: 2012-3009.
    [15]
    Banwart S, Bernasconi S M, Bloem J, et al. Soil processes and functions in critical zone observatories: Hypotheses and experimental design[J]. Vadose Zone Journal, 2011, 10(3): 974- 987. doi: 10.2136/vzj2010.0136
    [16]
    Zacharias S, Bogena H, Samaniego L. A network of terrestrial environmental observatories in Germany[J]. Vadose Zone Journal, 2011, 10(3): 955- 973. doi: 10.2136/vzj2010.0139
    [17]
    National Academies of Sciences, Engineering, and Medicine. A vision for NSF earth sciences 2020-2030: Earth in time[M]. Washington, DC, USA: The National Academies Press, 2020.
    [18]
    Giardino J R, Houser C. Principles and dynamics of the critical zone[M]. Amsterdam, Netherland: Elsevier, 2015.
    [19]
    李小雁, 马育军. 水文土壤学: 一门新兴的交叉学科[J]. 科技导报, 2008, 26(9): 78-82. doi: 10.3321/j.issn:1000-7857.2008.09.017

    Li X Y, Ma Y J. Hydropedology: A new interdisciplinary field related to soil science and hydroloy[J]. Science & Technology Review, 2008, 26(9): 78-82(in Chinese with English abstract). doi: 10.3321/j.issn:1000-7857.2008.09.017
    [20]
    Xu J, Huang P. Molecular environmental soil science at the interfaces in the Earth's critical zone[M]. Berlin, Germany: Springer-Verlag, 2009.
    [21]
    李小雁. 水文土壤学面临的机遇与挑战[J]. 地球科学进展, 2012, 27(5): 557-562. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201205007.htm

    Li X Y. Opportunity and challenges for hydropedology[J]. Advances in Earth Science, 2012, 27(5): 557-562(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201205007.htm
    [22]
    Banwart S, Zhu C. Frontiers in international critical zone science-workshop report, May 21-23, 2014[R]. Beijing: National Natural Science Foundation of China, 2015.
    [23]
    王晶袁, 赵文武, 张骁. 地球关键带水文土壤学与自然资源可持续利用: 2016年水文土壤学国际会议述评[J]. 生态学报, 2016, 36(22): 7501-7504. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201622063.htm

    Wang J Y, Zhao W W, Zhang X. Hydropedology in Earth's critical zone and sustainable use of natural resources: Review on the 2016 international conference of hydropedology[J], Acta Ecologica Sinica, 2016, 36(22): 7501-7504(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201622063.htm
    [24]
    White T. Special focus: The US critical zone observatories[J]. International Innovation, 2012, 8: 108-127.
    [25]
    Ashley G M. Where are we headed: Soft rock research into the new millennium[J]. Abstracts with Programs-Geological Society of America, 1998, 30(7): 148.
    [26]
    Banwart S, Menon M, Bernasconi S M, et al. Soil processes and functions across an international network of critical zone observatories: Introduction to experimental methods and initial results[J]. Comptes Rendus Geoscience, 2012, 344(11 /12): 758-772.
    [27]
    朱永官, 李刚, 张甘霖, 等. 土壤安全: 从地球关键带到生态系统服务[J]. 地理学报, 2015, 70(12): 1859-1869. doi: 10.11821/dlxb201512001

    Zhu Y G, Li G, Zhang G L, et al. Soil security: From Earth's critical zone to ecosystem services[J]. Acta Geographica Sinica, 2015, 70(12): 1859-1869(in Chinese with English abstract). doi: 10.11821/dlxb201512001
    [28]
    Brantley S L, Goldhaber M B, Ragnarsdottir K V. Crossing disciplines and scales to understand the critical zone[J]. Elements, 2007, 3(5): 307-314. doi: 10.2113/gselements.3.5.307
    [29]
    Anderson S P, von Blanckenburg F, White A F. Physical and chemical controls on the critical zone[J]. Elements, 2007, 3(5): 315-319. doi: 10.2113/gselements.3.5.315
    [30]
    Amundson R, Richter D D, Humphreys G S, et al. Coupling between biota and earth materials in the critical zone[J]. Elements, 2007, 3(5): 327-332. doi: 10.2113/gselements.3.5.327
    [31]
    Anderson S P, Bales R C, Duffy C J. Critical zone observatories: Building a network to advance interdisciplinary study of Earth surface processes[J]. Mineralogical Magazine, 2008, 72(1): 7-10. doi: 10.1180/minmag.2008.072.1.7
    [32]
    曹建华, 杨慧, 张春来, 等. 中国西南岩溶关键带结构与物质循环特征[J]. 中国地质调查, 2018, 5(5): 1-12. doi: 10.19388/j.zgdzdc.2018.05.01

    Cao J H, Yang H, Zhang C L, et al. Characteristics of structure and material cycling of the karst critical zone in Southwest China[J]. Geological Survey of China, 2018, 5(5): 1-12(in Chinese with English abstract). doi: 10.19388/j.zgdzdc.2018.05.01
    [33]
    Martin J B, Grammont P C D, Covington M D, et al. A new focus on the neglected carbonate critical zone[N/OL]. Eos, 2021-9-20[2022-06-22]. _aaaaaa_paichu__.
    [34]
    Mahlera B J, Jiang Y, Pu J, et al. Editorial: Advances in hydrology and the water environment in the karst critical zone under the impacts of climate change and anthropogenic activities[J]. Journal of Hydrology, 595(1): 125982.
    [35]
    Green S M, Dungaita J A J, Tu C L, et al. Soil functions and ecosystem services research in the Chinese karst critical zone[J]. Chemical Geology, 2019, 527(1): 119107.
    [36]
    Sullivan P L, Macpherson G L, Martin J B, et al. Evolution of carbonate and karst critical zones[J]. Chemical Geology, 2019, 527(1): 119223.
    [37]
    Covington M D, Martin J B, Toran L E. Carbonates in the critical zone[J/OL]. (2022-03-31)[2022-06-22]. _aaaaaa_paichu__.
    [38]
    王世杰, 彭韬, 刘再华, 等. 加强喀斯特关键带长期观测研究, 支撑西南石漠化区生态恢复与民生改善[J]. 中国科学院院刊, 2020, 35(7): 925-933. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX202007017.htm

    Wang S J, Peng T, Liu Z H, et al. Strengthen karst surface systematic processes research, support ecological restoration and social improvement in karst rocky desertification areas in Southwest China[J]. Bulletin of the Chinese Academy of Sciences, 2020, 35(7): 925-933(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX202007017.htm
    [39]
    Hartmann A, Goldscheider N, Wagener T, et al. Karst water resources in a changing world: Review of hydrological modeling approaches[J]. Reviews of Geophysics, 2014, 52(3): 218-242. doi: 10.1002/2013RG000443
    [40]
    Yuan D, Zhu D, Weng J, et al. Karst of China[M]. Beijing: Geological Press, 1991: 1-239.
    [41]
    Dreybrodt W. Processes in karst systems: Physics, chemistry, and geology[M]. Berlin, Germany: Springer-Verlag, 1988: 1-288.
    [42]
    袁道先, 刘再华, 蒋忠诚, 等. 碳循环与岩溶地质环境[M]. 北京: 科学出版社, 2003.

    Yuan D X, Liu Z H, Jiang Z C, et al. Carbon cycling and karst geological environment[M]. Beijing: Science Press, 2003(in Chinese).
    [43]
    Yang Q, Yang Z, Zhang Q, et al. Transferability of heavy metal(loid)s from karstic soils with high geochemical background to peanut seeds[J]. Environmental Pollution, 2022, 299(1): 118819.
    [44]
    Liu Z, Li Q, Sun H, et al. Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects[J]. Journal of Hydrology, 2007, 337(1/2): 207-223.
    [45]
    Yang R, Liu Z, Zeng C, et al. Response of epikarst hydrochemical changes to soil CO2 and weather conditions at Chenqi, Puding, SW China[J]. Journal of Hydrology, 2012, 468/469(1/2): 151-158.
    [46]
    Pu J, Yuan D, Zhao H, et al. Hydrochemical and PCO2 variations of a cave stream in a subtropical karst area, Chongqing, SW China: Piston effects, dilution effects, soil CO2 and buffer effects[J]. Environmental Earth Sciences, 2014, 71(9): 4039-4049. doi: 10.1007/s12665-013-2787-z
    [47]
    Covington M D. The importance of advection for CO2 dynamics in the karst critical zone: An approach from dimensional analysi[C]// Feinberg J M, Gao Y, Alexander E C Jr. Caves and karst across time: Geological society of America special paper 516. Boulder, Colorado, USA: Geological Society of America. 2016.
    [48]
    罗维均, 杨开萍, 王彦伟, 等. 喀斯特地区不同岩土组构对岩溶碳通量的影响[J]. 地质科技通报, 2022, 41(3): 208-214. doi: 10.19509/j.cnki.dzkq.2022.0088

    Luo W J, Yang K P, Wang Y W, et al. Influence of different rock-soil fabrics on carbonate weathering carbon sink flux in karst regions[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 208-2014(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0088
    [49]
    Pu J, Yuan D, He Q, et al. High-resolution monitoring of nitrate variations in a typical subterranean karst stream, Chongqing, China[J]. Environmental Earth Sciences, 2011, 64(7): 1985-1993. doi: 10.1007/s12665-011-1019-7
    [50]
    Yue F, Li S, Waldron S, et al. Rainfall and conduit drainage combine to accelerate nitrate loss from a karst agroecosystem: Insights from stable isotope tracing and high-frequency nitrate sensing[J]. Water Research, 2020, 186(1): 116388.
    [51]
    Zhang Z, Chen X, Soulsby C. Catchment-scale conceptual modelling of water and solute transport in the dual flow system of the karst critical zone[J]. Hydrological Processes, 2017, 31(19): 3421-3436. doi: 10.1002/hyp.11268
    [52]
    Bonacci O. Karst hydrology[M]. Berlin, Germany: Springer-Verlag, 1987.
    [53]
    郭绪磊, 周宏, 罗明明, 等. 黄陵穹隆周缘岩溶水流系统特征及成因[J]. 地质科技通报, 2022, 41(1): 328-340. doi: 10.19509/j.cnki.dzkq.2022.0033

    Guo X L, Zhou H, Luo M M, et al. Characteristics and genesis of karst water flow system around Huangling anticline[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 328-340(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0033
    [54]
    Xu X, Liu W. The global distribution of Earth's critical zone and its controlling factors[J]. Geophysical Research Letters, 2017, 44(7): 3201-3208. doi: 10.1002/2017GL072760
    [55]
    袁道先. 论岩溶水的不均匀性[C]//《汇编》选编小组. 岩溶地区水文地质及工程地质工作经验汇编. 北京: 地质出版社, 1978.

    Yuan D X. On the heterogeneity of karst water[C]//Editorial Group on This Compilation. Compilation of working experiences on hydrogeological & engineering geology in karst area. Beijing: Geological Publishing House, 1978(in Chinese).
    [56]
    刘之葵, 梁金城. 地下水位变化对桂林地区地基基础的影响[J]. 中国岩溶, 2005, 24(3): 245-249. doi: 10.3969/j.issn.1001-4810.2005.03.014

    Liu Z K, Liang J C. Effect of water table variations on the foundation in Guilin region[J]. Carsologica Sinica, 2005, 24(3): 245-249(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2005.03.014
    [57]
    王壬林. 桂林峰林平原地下的洞穴特征[J]. 广西地质, 1994, 7(4): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ404.002.htm

    Wang R L. Characteristics of underground caves in Fenglin Plain, Guilin[J]. Guangxi Geology, 1994, 7(4): 22-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ404.002.htm
    [58]
    Mattey D P, Atkinson T C, Barker J A. et al. Carbon dioxide, ground air and carbon cycling in Gibraltar karst[J]. Geochimica et Cosmochimica Acta, 2016, 184(1): 88-113.
    [59]
    Zhang J, Li T. Seasonal and interannual variations of hydrochemical characteristics and stable isotopic compositions of drip waters in Furong Cave, southwest China based on 12 years' monitoring[J]. Journal of Hydrology, 2019, 572(1/2): 40-50.
    [60]
    Culver D C, Pipan T. The biology of caves and other subterranean habitats[M]. New York, USA: Oxford University Press, 2009.
    [61]
    刘志霄. 洞穴生物学[M]. 北京: 科学出版社, 2021.

    Liu Z X. Speleobiology[M]. Beijing: Science Press, 2021(in Chinese).
    [62]
    刘鸿雁, 蒋子涵, 戴景钰, 等. 岩石裂隙决定喀斯特关键带地表木本与草本植物覆盖[J]. 中国科学: 地球科学, 2019, 49(12): 1974-1981. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201912008.htm

    Liu H Y, Jiang Z H, Dai J Y, et al. Rock crevices determine woody and herbaceous plant cover in the karst critical zone[J]. Science China Earth Sciences, 2019, 49(12): 1974-1981(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201912008.htm
    [63]
    Ding Y, Nie Y, Schwinning S, et al. A novel approach for estimating groundwater use by plants in rock dominated habitats[J]. Journal of Hydrology, 2019, 565(1/2): 760-769.
    [64]
    Deng Y, Ke J, Wu S, et al. Responses of plant water uptake to groundwater depth in limestone outcrops[J]. Journal of Hydrology, 2020, 590(1/2): 125377.
    [65]
    Schwinning S. The ecohydrology of roots in rocks[J]. Ecohydrology, 2010, 3(2): 238-245.
    [66]
    Geekiyanage N, Goodale U M, Cao K, et al. Plant ecology of tropical and subtropical karst ecosystems[J]. Biotropica, 2019, 51(5): 626-640. doi: 10.1111/btp.12696
    [67]
    Klimchouk A B. Hypogene speleogenesis: Hydrogeological and morphogenetic perspective[R]. Carlsbad, NM, USA: National Cave and Karst Research Institute, 2007.
    [68]
    Mylroie J, Mylroie J, Humphreys W, et al. Flank margin cave development and tectonic uplift, Cape Range, Australia[J]. Journal of Cave and Karst Studies, 2017, 79(1): 35-47. doi: 10.4311/2015ES0142
    [69]
    Condon L E, Markovich K H, Kelleher C A, et al. Where is the bottom of a watershed?[J]. Water Resources Research, 2020, 56(3): e2019WR026010.
    [70]
    Riebe C S, Hahm W J, Brantley S L. Controls on deep critical zone architecture: A historical review and four testable hypotheses[J]. Earth Surface Processes and Landforms, 2017, 42(1): 128-156. doi: 10.1002/esp.4052
    [71]
    Brantley S L, Megonigal J P, Scatena F N, et al. Twelve testable hypotheses on the geobiology of weathering[J]. Geobiology, 2011, 9(2): 140-165.
    [72]
    McIntosh J C, Schlegel M E, Person M. Glacial impacts on hydrologic processes in sedimentary basins: Evidence from natural tracer studies[J]. Geofluids, 2012, 12(1): 7-21. doi: 10.1111/j.1468-8123.2011.00344.x
    [73]
    Klimchouk A, Kasjan J. Krubera(Voronja): In a search for the route to 2000 meters depth: The deepest cave in the world in the Arabika Massif, Western Caucasus[J]. NSS News, 2001, 59(5): 252-257.
    [74]
    Dreybrodt W. Processes in karst systems: Physics, chemistry, and geology[M]. Berlin, Germany: Springer-Verlag, 1988.
    [75]
    Phillips J D, Pawlik Ł, Šamonil P. Weathering fronts[J]. Earth-Science Reviews, 2019, 198: 102925. doi: 10.1016/j.earscirev.2019.102925
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(603) PDF Downloads(150) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return