Volume 41 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Zhang Cheng, Xiao Qiong, Sun Ping′an, Gao Xubo, Guo Yongli, Miao Ying, Wang Jinliang. Progress on karst carbon cycle and carbon sink effect study and perspective[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 190-198. doi: 10.19509/j.cnki.dzkq.2022.0193
Citation: Zhang Cheng, Xiao Qiong, Sun Ping′an, Gao Xubo, Guo Yongli, Miao Ying, Wang Jinliang. Progress on karst carbon cycle and carbon sink effect study and perspective[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 190-198. doi: 10.19509/j.cnki.dzkq.2022.0193

Progress on karst carbon cycle and carbon sink effect study and perspective

doi: 10.19509/j.cnki.dzkq.2022.0193
  • Received Date: 20 Jun 2022
    Available Online: 10 Nov 2022
  • Carbonate weathering is an important part of the global carbon cycle, acts as an atmospheric and soil CO2 sink. Driven by ecosystem factors and affected by global change, carbon sinks in karst areas have the characteristics of surface and underground carbon sinks.This work briefly introduces the relationship between the karst carbon cycle and global change, discusses the related scientific issues and main progress of karst carbon sinks, analyzes the potential of karst sink increases and land use changes, and further proposes a conceptual model of carbonate weathering processes based on the concept of karst critical zones.Carbon sink generated by weathering of carbonate rocks may contribute to the "missing sink" of the global carbon cycle and play a role in mitigating the release of soil CO2 to the atmosphere, thus becoming an important regulator of the item of "land use change" (ELUC) in the global carbon cycle model.The carbonate weathering process responds quickly to short-time scale environmental factors, which is the core driving mechanism that connects biological, hydrological, as well as geochemical processes in karst critical zones.The karst carbon cycle can be regarded as an extension or lateral component of the soil-ecosystem carbon cycle, which together constitute a complete terrestrial shallow surface carbon cycle system in karst areas.The negative feedback effect of carbonate weathering on the increase of atmospheric CO2 concentration and the continuous promotion of rock desertification control and ecological restoration contain huge potential for karst carbon sequestration and sink increase.The monitoring and research on seasonal and regional variations in soil CO2 should be strengthened, and an inverse model based on the correlation between soil CO2 and the watershed hydrochemistry index should be constructed to estimate the background of the regional carbon sink and evaluate the annual carbon sink increment and potential, thus providing a clearer and effective scheme and approach for karst sink increase.

     

  • loading
  • [1]
    Ford D, Williams P. Karst hydrogeology and geomorphology[M]. Chichester: John Wiley & Sons, 2007.
    [2]
    Berner E K, Berner R A. Global environment: Water, air, and geochemical cycles[M]. Princeton: Princeton University Press, 2012.
    [3]
    Schindlbacher A, Borken W, Djukic I, et al. Contribution of carbonate weathering to the CO2 efflux from temperate forest soils[J]. Biogeochemistry, 2015, 124: 273-290. doi: 10.1007/s10533-015-0097-0
    [4]
    [5]
    Ciais P, Sabine C, Bala G, et al. Carbon and other biogeochemical cycles[C]//Stocker T F, Qin D, Plattner G K, et al. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013: 465-570.
    [6]
    Regnier P, Friedlingstein P, Ciais P, et al. Anthropogenic perturbation of the carbon fluxes from land to ocean[J]. Nature Geoscience, 2013, 6(8): 597-607. doi: 10.1038/ngeo1830
    [7]
    Yuan D. Contribution of IGCP379 "Karst Processes and Carbon Cycle" to global change[J]. Episodes, 1998, 21(3): 198.
    [8]
    袁道先, 蒋忠诚. IGCP379"岩溶作用与碳循环"在中国的研究进展[J]. 水文地质工程地质, 2000, 27(1): 49-51. doi: 10.3969/j.issn.1000-3665.2000.01.016

    Yuan D X, Jiang Z C. Progress of the IGCP 379 project "Karst Processes and the Carbon Cycles" in China[J]. Hydrogeology and Engineering Geology, 2000, 27(1): 49-51(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2000.01.016
    [9]
    Yuan D, Zhang C. Karst processes and the carbon cycle final report of IGCP379[M]. Beijing: Geological Publishing House, 2002.
    [10]
    Yuan D X. Foreword for the special topic "Geological Processs in Carbon Cycle"[J]. Chinese Science Bulletin, 2011, 56(35): 3741-3742. doi: 10.1007/s11434-011-9944-0
    [11]
    刘再华, Dreybrodt W, 王海静. 一种由全球水循环产生的可能重要的CO2汇[J]. 科学通报, 2007, 52(20): 2418-2422. doi: 10.3321/j.issn:0023-074x.2007.20.013

    Liu Z H, Dreybrodt W, Wang H J. A potential important CO2 sink generated by the global water cycle[J]. Chinese Science Bulletin, 2007, 52(20): 2418-2422(in Chinese with English abstract). doi: 10.3321/j.issn:0023-074x.2007.20.013
    [12]
    蒋忠诚, 袁道先, 曹建华, 等. 中国岩溶碳汇潜力研究[J]. 地球学报, 2012, 33(2): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201202001.htm

    Jiang Z C, Yuan D X, Cao J H, et al. A study of carbon sink capacity of karst processes in China[J]. Acta Geoscientica Sinica, 2012, 33(2): 129-134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201202001.htm
    [13]
    蒲俊兵, 蒋忠诚, 袁道先, 等. 岩石风化碳汇研究进展: 基于IPCC第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201510005.htm

    Pu J B, Jiang Z C, Yuan D X, et al. Some opinions on rock weathering related carbon sinks from the IPCC fifth assessment report[J]. Advances in Earth Science, 2015, 30(10): 1081-1090(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201510005.htm
    [14]
    Ciais P, Rayner P, Chevallier F, et al. Atmospheric inversions for estimating CO2 fluxes: Methods and perspectives[J]. Climate Change, 2010, 103(1/2): 69-92.
    [15]
    Fang J, Chen A, Peng C, et al. Changes in forest biomass carbon storage in China between 1949 and 1988[J]. Science, 2011, 292: 2320-2322.
    [16]
    Gurney K R, Eckels W J. Regional trends in terrestrial carbon exchange and their seasonal signatures[J]. Tellus Series B: Chemical and Physical Meteorology, 2011, 63(3): 328-339. doi: 10.1111/j.1600-0889.2011.00534.x
    [17]
    Jacobson A R, Mikaloff Fletcher S E, Gruber N, et al. A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results[J]. Global Biogeochemical Cycles, 2007, 21(1): GB002556.
    [18]
    Liu Z, Dreybrodt W. Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land[J]. Science Bulletin, 2015, 60(2): 182-191. doi: 10.1007/s11434-014-0682-y
    [19]
    Liu Z, Macpherson G L, Groves C, et al. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth Science Reviews, 2018, 182: 42-49. doi: 10.1016/j.earscirev.2018.05.007
    [20]
    Piao S, Fang J, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458: 1009-1013. doi: 10.1038/nature07944
    [21]
    李朝君, 王世杰, 白晓永, 等. 全球主要河流流域碳酸盐岩风化碳汇评估[J]. 地理学报, 2019, 74(7): 1319-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201907005.htm

    Li C J, Wang S J, Bai X Y, et al. Estimation of carbonate rock weathering-related carbon sink in global major river basins[J]. Acta Geographica Sinice, 2019, 74(7): 1319-1332(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201907005.htm
    [22]
    吕小溪, 颜翔琦, 胡晨鹏. 喀斯特关键带的地质碳汇及其影响因素研究进展[J]. 河北民族师范学院学报, 2020, 40(4): 107-115. doi: 10.16729/j.cnki.jhnun.2020.04.018

    Lü X X, Yan X Q, Hu C P. Geological carbon sink in karst critical zones and its influence factors[J]. Journal of Hebei Normal University for Nationalities, 2020, 40(4): 107-115(in Chinese with English abstract). doi: 10.16729/j.cnki.jhnun.2020.04.018
    [23]
    Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1): 171-184.
    [24]
    Gaillardet J, Calmels D, Romero-Mujalli G, et al. Global climate control on carbonate weathering intensity[J/OL]. Chemical Geology, 2018, https://doi.org/10.1016/j.chemgeo.2018.05.009.
    [25]
    Eswaran H, Van Den Berg E, Reich P. Organic carbon in soils of the world[J]. Soil Science Society of America Journal, 1993, 57: 192-194. doi: 10.2136/sssaj1993.03615995005700010034x
    [26]
    Lal R. Soil erosion and the global carbon budget[J]. Environment International, 2003, 29: 437-450. doi: 10.1016/S0160-4120(02)00192-7
    [27]
    Valentini R, Matteucci G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests[J]. Nature, 2000, 404: 861-865. doi: 10.1038/35009084
    [28]
    Raich J W, Potter C S, Bhagawati D. Interannual variability in global soil respiration, 1980-1994[J]. Globe Change Biology, 2002, 8: 800-812. doi: 10.1046/j.1365-2486.2002.00511.x
    [29]
    Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems[J]. Nature, 2001, 414: 169-172. doi: 10.1038/35102500
    [30]
    Hanson P J, Edwards N T, Garten C T, et al. Separating root and soil microbial contributions to soil respiration: A review of methods and observations[J]. Biogeochemistry, 2000, 48: 115-146. doi: 10.1023/A:1006244819642
    [31]
    Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods[J]. Soil Biology Biochemistry, 2006, 38: 425-448. doi: 10.1016/j.soilbio.2005.08.020
    [32]
    Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils[J]. Globe Biogeochemical Cycles, 1995, 9(1): 23-36. doi: 10.1029/94GB02723
    [33]
    Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283: 641-683. doi: 10.2475/ajs.283.7.641
    [34]
    Calmels D, Gaillarde J, Francois L. Sensitivity of carbonate weathering to soil CO2 production by biological activity along a temperate climate transect[J]. Chemical Geology, 2014, 390: 74-86. doi: 10.1016/j.chemgeo.2014.10.010
    [35]
    Walker J C G, Hays P B, Kasting J F. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature[J]. Journal of Geophysical Research, 1981, 86(C10): 9776. doi: 10.1029/JC086iC10p09776
    [36]
    Dong X, Matthew J C, Jonathan B M, et al. Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape[J]. Chemical Geology, 2018, 527: 118774.
    [37]
    Zhang C, Wang J, Yan J. Diel cycling and flux of HCO3- in a typical karst spring-fed stream of southwestern China[J]. Acta Carsologica, 2016, 45(2): 107-122.
    [38]
    章程, 肖琼. 桂林漓江水体溶解无机碳迁移与水生光合碳固定研究[J]. 中国岩溶, 2021, 40(4): 555-564. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202104001.htm

    Zhang C, Xiao Q. Study on dissolved inorganic carbon migration and aquatic photosynthesis sequestration in Lijiang River, Guilin[J]. Carsologica Sinica, 2021, 40(4): 555-564(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202104001.htm
    [39]
    肖琼, 赵海娟, 章程, 等. 岩溶区地表水体惰性有机碳研究[J]. 第四纪研究, 2020, 40(4): 1058-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ202004019.htm

    Xiao Q, Zhao H J, Zhang C, et al. Study of the recalcitrant dissolved organic carbon in karst surface water[J]. Quaternary Sciences, 2020, 40(4): 1058-1069(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ202004019.htm
    [40]
    He Q, Xiao Q, Fan J, et al. The impact of heterotrophic bacteria on recalcitrant dissolved organic carbon formation in a typical karstic river[J]. Science of the Total Environment, 2022, 815: 152576. doi: 10.1016/j.scitotenv.2021.152576
    [41]
    Gaillardet J, Dupre B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1): 3-30.
    [42]
    Yuan D. Sensitivity of karst process to environmental change along the PEP Ⅱ transect[J]. Quaternary International, 1997, 37: 105-113. doi: 10.1016/1040-6182(96)00012-2
    [43]
    Cao J H, Yang H, Kang Z Q. Preliminary regional estimation of carbon sink flux by carbonate rock corrosion: A case study of the Pearl River Basin[J]. Chinese Science Bulletin, 2011, 56: 3766-3773. doi: 10.1007/s11434-011-4377-3
    [44]
    覃小群, 蒋忠诚, 张连凯, 等. 珠江流域碳酸盐岩与硅酸盐岩风化对大气CO2汇的效应[J]. 地质通报, 2015, 34(9): 1749-1757. doi: 10.3969/j.issn.1671-2552.2015.09.016

    Qin X Q, Jiang Z C, Zhang L K, et al. The difference of the weathering rate between carbonate rocks and silicate rocks and its effects on the atmospheric CO2 consumption in the Pearl River Basin[J]. Geological Bulletin of China, 2015, 34(9): 1749-1757(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2015.09.016
    [45]
    裴建国, 章程, 张强, 等. 典型岩溶水系统碳汇通量估算[J]. 岩矿测试, 2012, 31(5): 884-888. doi: 10.3969/j.issn.0254-5357.2012.05.023

    Pei J G, Zhang C, Zhang Q, et al. Flux estimation of carbon sink in typical karst water systems[J]. Rock and mineral analysis, 2012, 31(5): 884-888(in Chinese with English abstract). doi: 10.3969/j.issn.0254-5357.2012.05.023
    [46]
    Wei X, Yi W, Shen C, et al. 14C as a tool for evaluating riverine POC sources and erosion of the Zhujiang(Pearl River) drainage basin, South China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7): 1094-1097.
    [47]
    Liu Z, Wolfgang D, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3): 162-172.
    [48]
    Jeanthon C, Boeuf D, Dahan O, et al. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea[J]. Biogeosciences Discussions, 2011, 8(7): 1955-1970. doi: 10.5194/bg-8-1955-2011
    [49]
    Suyama T, Shigematsu T, Suzuki T, et al. Photosyntheticapparatus in roseateles depolymerans 61A is transcriptionally induced by carbon limitation[J]. Applied and Environmental Microbiology, 2002, 68(4): 1665. doi: 10.1128/AEM.68.4.1665-1673.2002
    [50]
    Li Q, Song A, Peng W, et al. Contribution of aerobic anoxygenic phototrophic bacteria to total organic carbon pool in aquatic system of subtropical karst catchments, Southwest China: Evidence from hydrochemical and microbiological study[J]. FEMS Microbiology Ecology, 2017, 93(6): 1-8.
    [51]
    McLaughlin C, Kaplan A. Biological lability of dissolved organic carbon in stream water and contributing terrestrial sources[J]. Freshwater Science, 2013, 32(4): 1219-1230. doi: 10.1899/12-202.1
    [52]
    Loisy C, Cohen G, Laveuf C, et al. The CO2-Vadose Project: Dynamics of the natural CO2 in a carbonate vadose zone[J]. International Journal of Greenhouse Gas Control, 2013, 14: 97-112. doi: 10.1016/j.ijggc.2012.12.017
    [53]
    Romero-Mujalli G, Hartmann J, Böker J, et al. Ecosystem controlled soil-rock pCO2 and carbonate weathering: Constraints by temperature and soil water content[J]. Chemical Geology, 2019, 527: 118634. doi: 10.1016/j.chemgeo.2018.01.030
    [54]
    Yoshimura K, Nakao S, Noto M, et al. Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan: Chemical weathering of carbonate rocks by deep source CO2 and sulfuric acid[J]. Chemical Geology, 2001, 177(3): 415-430.
    [55]
    Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science, 1987, 287(5): 401-428. doi: 10.2475/ajs.287.5.401
    [56]
    Williams P W, Dowling R K. Solution of marble in the karst of the Pikikiruna Range, northwest Nelson, New Zealand[J]. Earth Surface Processes, 1979, 4(B1010): 15-36.
    [57]
    Ford D C, Williams P W. Karst geomorphology and hydrology[M]. London: Unwin Hyman, 1989.
    [58]
    Julian M, Martin J, Nicod J. Les karsts Mediterraneens[J]. Mediterranee, 1978, 1/2: 115-131.
    [59]
    章程. 不同土地利用土下溶蚀速率季节差异及其影响因素[J]. 地质论评, 2010, 56(1): 136-140. doi: 10.16509/j.georeview.2010.01.018

    Zhang C. Seasonal variation of dissolution rate under the soil at different land uses and its influence factors[J]. Geological Review, 2010, 56(1): 136-140(in Chinese with English abstract). doi: 10.16509/j.georeview.2010.01.018
    [60]
    Andrews J A, Schlesinger W H. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment[J]. Global Biogeochemical Cycles, 2001, 15(1): 149-162. doi: 10.1029/2000GB001278
    [61]
    Berner R A. The rise of plants and their effect on weathering and atmospheric CO2[J]. Science, 1997, 276: 544-546. doi: 10.1126/science.276.5312.544
    [62]
    Zhang C. Carbonate rock dissolution rates in different landuses and their carbon sink effect[J]. Chinese Science Bulletin, 2011, 56(35): 3759-3765. doi: 10.1007/s11434-011-4404-4
    [63]
    章程, Mahippong W, 汪进良, 等. 泰国热带典型岩溶峰丛谷地区不同土地利用土下的溶蚀速率[J]. 第四纪研究, 2016, 36(6): 1393-1402.

    Zhang C, Worakul M, Wang J L, et al. Dissolution rates in soil of different land uses of typical tropical karst peak depression valley in Thailand[J]. Quaternary Sciences, 2016, 36(6): 1393-1402(in Chinese with English abstract).
    [64]
    Hartmann J, West A J, Renforth P, et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification[J]. Reviews of Geophysics, 2013, 51: 113-149. doi: 10.1002/rog.20004
    [65]
    Beaulieu E, Godderis Y, Donnadieu Y, et al. High sensitivity of the continental-weathering carbon dioxide sink to future climate change[J]. Nature Climate Change, 2012, 2(5): 346-349. doi: 10.1038/nclimate1419
    [66]
    Yang R, Chen B, Liu H, et al. Carbon sequestration and decreased CO2 emission caused by terrestrial aquatic photosynthesis: insights from diel hydrochemical variations in an epikarst spring and two spring-fed ponds in different seasons[J]. Applied Geochemistry, 2015, 63(3): 248-260.
    [67]
    Simonsen J F, Harremoës P. Oxygen and pH fluctuations in rivers[J]. Water Research, 1978, 12: 477-489. doi: 10.1016/0043-1354(78)90155-0
    [68]
    Spiro B, Pentecost A. One day in the life of a stream-a diurnal inorganic carbon mass balance for travertine-depositing stream(Waterfall Beck, Yorkshire)[J]. Geomicrobiology Journal, 1991, 9: 1-11. doi: 10.1080/01490459109385981
    [69]
    Hartley A M, House W A, Leadbeater B S C, et al. The use of microelectrodes to study the precipitation of calcite upon algal biofilms[J]. Journal of Colloid and Interface Science, 1996, 183: 498-505. doi: 10.1006/jcis.1996.0573
    [70]
    Guasch H, Armengol J, Martí E, et al. Diurnal variation in dissolved oxygen and carbon dioxide in two low-order streams[J]. Water Research, 1998, 32: 1067-1074. doi: 10.1016/S0043-1354(97)00330-8
    [71]
    Liu Z, Liu X, Liao C. Daytime deposition and nighttime dissolution of calcium carbonate controlled by submerged plants in a karst spring-fed pool: Insights from high time-resolution monitoring of physico-chemistry of water[J]. Environmental Geology, 2008, 55: 1159-1168. doi: 10.1007/s00254-007-1062-6
    [72]
    Langmuir D. Aqueous environmental chemistry[M]. New Jersey: Prentice-Hall, Inc., 1997.
    [73]
    Cicerone D S, Stewart A J, Roh Y. Diel cycles in calcite production and dissolution in a eutrophic basin[J]. Environmental Toxicology and Chemistry, 1999, 18: 2169-2177.
    [74]
    Montety V D, Martin J B, Cohen M J, et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J]. Chemical Geology, 2011, 283: 31-43.
    [75]
    章程, 谢运球, 宁良丹, 等. 桂林会仙岩溶湿地典型水生植物δ13C特征与固碳量估算[J]. 中国岩溶, 2013, 32(3): 247-252. doi: 10.3969/j.issn.1001-4810.2013.03.001

    Zhang C, Xie Y X, Ning L D, et al. Characteristics of δ13C in typical aquatic plants and carbon sequestration in the Huixian karst wetland, Guilin[J]. Carsologica Sinica, 2013, 32(3): 247-252(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2013.03.001
    [76]
    李瑞, 于奭, 孙平安, 等. 贵州茂兰板寨水域水生植物δ13C特征及光合作用固定HCO3-碳量估算[J]. 中国岩溶, 2015, 34(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201501002.htm

    Li R, Yu S, Sun P A, et al. Characteristics of δ13C in typical aquatic plants and carbon sequestration by plant photosynthesis in the Banzhai catchment, Maolan of Guizhou Province[J]. Carsologica Sinica, 2015, 34(1): 9-16(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201501002.htm
    [77]
    陈波, 杨睿, 刘再华, 等. 水生光合生物对茂兰拉桥泉及其下游水化学和δ13CDIC昼夜变化的影响[J]. 地球化学, 2014, 43(4): 375-385. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201404008.htm

    Chen B, Yang R, Liu Z H, et al. Effects of aquatic phototrophs on diurnal hydrochemical and 13CDIC variations in an epikarst spring and two spring-fed ponds of Laqiao, Maolan, SW China[J]. Geochimica, 2014, 43(4): 375-385(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201404008.htm
    [78]
    黄奇波, 覃小群, 唐萍萍, 等. 桂江流域河流有机碳特征[J]. 地质科技情报, 2014, 33(2): 148-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402025.htm

    Huang Qibo, Qin Xiaoqun, Tang Pingping, et al. Characteristics of riverine organic carbon in Guijiang watershed, Guangxi[J]. Geological Science and Technology Information, 2014, 33(2): 148-153(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402025.htm
    [79]
    Lian B, Yuan D X, Liu Z H. Effect of microbes on karstification in karst ecosystems[J]. Chinese Science Bulletin, 2011, 56: 3743-3747. doi: 10.1007/s11434-011-4648-z
    [80]
    Friedlingstein P, O'Sullivan M, Jones M W, et al. Global carbon budget 2020[J], Earth System Science Data, 2020, 12: 3269-3340. doi: 10.5194/essd-12-3269-2020
    [81]
    章程, 汪进良, 肖琼, 等. 斯洛文尼亚典型岩溶区土壤剖面CO2冬季动态变化特征[J]. 生态学报, 2022, 42(8): 3288-3299. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202208021.htm

    Zhang C, Wang J L, Xiao Q, et al. Winter time CO2 changes in a typical karst soil profile in Slovenia[J]. Acta Ecologica Sinica, 2022, 42(8): 3288-3299(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202208021.htm
    [82]
    Hinsinger P, Barros O N F, Benedetti M F, et al. Plant-induced weathering of a basaltic rock: Experimental evidence[J]. Geochimica et Cosmochimica Acta, 2001, 65: 137-152. doi: 10.1016/S0016-7037(00)00524-X
    [83]
    Gulley J D, Martin J B, Moore P J, et al. Heterogeneous distributions of CO2 may be more important for dissolution and karstification in coastal eogenetic limestone than mixing dissolution[J]. Earth Surface Processes and Landforms, 2015, 40: 1057-1071. doi: 10.1002/esp.3705
    [84]
    Song C, Liu C, Zhang Y, et al. Impact of animal manure addition on the weathering of agricultural lime in acidic soils: The agent of carbonate weathering[J]. Journal of Groundwater Science and Engineering, 2017, 5(2): 202-212.
    [85]
    Merkel B J, Planer-Friedrich B. Groundwater geochemistry[M]. Berlin: Springer, 2005.
    [86]
    Liu Z H, Groves C, Yuan D X, et al. South China karst aquifer storm-scale hydrochemistry[J]. Ground Water, 2004, 42(4): 491-499. doi: 10.1111/j.1745-6584.2004.tb02617.x
    [87]
    Zhang C, Yuan D X, Cao J H. Analysis of the environmental sensitivities of a typical dynamic epikarst system at the Nongla monitoring site, Guangxi, China[J]. Environmental Geology, 2005, 47(5): 615-619. doi: 10.1007/s00254-004-1186-x
    [88]
    李恩香, 蒋忠诚, 曹建华, 等. 广西弄拉岩溶植被不同演替阶段的主要土壤因子及溶蚀率对比研究[J]. 生态学报, 2004, 24(6): 1131-1139. doi: 10.3321/j.issn:1000-0933.2004.06.006

    Li E X, Jiang Z C, Cao J H, et al. The comparison of properties of karst soil and karst erosion ratio under different successional stages of karst vegetation in Nongla, Guangxi[J]. Acta Ecologica Sinica, 2004, 24(6): 1131-1139(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0933.2004.06.006
    [89]
    蓝家程, 傅瓦利, 彭景涛, 等. 不同土地利用方式土下岩溶溶蚀速率及影响因素[J]. 生态学报, 2013, 33(10): 3205-3212. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201310031.htm

    Lan J C, Fu W L, Peng J T, et al. Dissolution rate under soil in karst areas and the influencing factors of different land use patterns[J]. Acta Ecologica Sinica, 2013, 33(10): 3205-3212(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201310031.htm
    [90]
    罗维均, 杨开萍, 王彦伟, 等. 喀斯特地区不同岩土组构对岩溶碳通量的影响[J]. 地质科技通报, 2022, 41(3): 208-214. doi: 10.19509/j.cnki.dzkq.2022.0088

    Luo Weijun, Yang Kaiping, Wang Yanwei, et al. Influence of different rock-soil fabrics on carbonate weathering carbon sink flux in karst regions[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 208-214(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0088
    [91]
    Li H W, Wang S J, Bai X Y, et al. Spatiotemporal distribution and national measurement of the global carbonate carbon sink[J]. Science of the Total Environment, 2018, 643: 157-170. doi: 10.1016/j.scitotenv.2018.06.196
    [92]
    Li H W, Wang S J, Bai X Y, et al. Spatiotemporal evolution of carbon sequestration of limestone weathering in China[J]. Science China Earth Sciences, 2019, 62(6): 974-991. doi: 10.1007/s11430-018-9324-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(741) PDF Downloads(169) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return