Volume 43 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
FENG Chen, LIANG Xing. Impact of human and natural factors on the water environment evolution of Dongting Lake area over the past 500 years[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 235-248. doi: 10.19509/j.cnki.dzkq.tb20230299
Citation: FENG Chen, LIANG Xing. Impact of human and natural factors on the water environment evolution of Dongting Lake area over the past 500 years[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 235-248. doi: 10.19509/j.cnki.dzkq.tb20230299

Impact of human and natural factors on the water environment evolution of Dongting Lake area over the past 500 years

doi: 10.19509/j.cnki.dzkq.tb20230299
More Information
  • Corresponding author: FENG Chen, E-mail: 184766148@qq.com
  • Received Date: 24 May 2023
  • Accepted Date: 04 Jul 2023
  • Rev Recd Date: 29 Jun 2023
  • Objective

    The disputes among humans, water and land have seriously restricted the sustainable development of the Dongting Lake region (TDLR).

    Methods

    To address this issue, it is crucial to understand the evolution of the hydrological environment in the TDLR, enabling solutions to the competition for space between human activities and water. By determining the evolution of the human-water relationship in the TDLR over the past 500 years, the influences of natural and human factors on the evolution of the hydrological environment are studied.

    Results

    Considering the characteristics of tectonic subsidence and sediment inflow in the TDLR, an evolutionary model of the hydrological environment induced by human activities and the geological environment was obtained, and not only the changing trends in the storage and drainage of water and sediment in the TDLR and Yangtze River but also the possibility of future evolution of the TDLR were clarified.

    Conclusion

    The key finding are as follows: (1) The continuous land reclamation has encroached on floodwater retention areas, significantly reducing Dongting Lake's flood storage capacity. (2) The construction of the Jingjiang Dyke has raised flood levels in the Jingjiang River and exerted a backwater effect on Dongting Lake, exacerbating flood disasters during the high-water period. (3) The straightening of the Jingjiang River has led to sediment deposition from Chenglingji to Wuhan, and the decline of the three distributaries of the Jingjiang River, causing shrinkage at the lake's inlets and blockage at its outlets. (4) Since the operation of the Three Gorges Reservoir, the sediment accumulation of the inflow water from Dongting Lake decreased significantly, and that of the Jingjiang reach below Chenglingji increased significantly. Under the influence of human activities, the flood storage capacity of Dongting Lake has decreased annually; therefore, the water inflow during flood periods is difficult to discharge, and dry water replenishment has gradually decreased; therefore, the dry period in the TDLR has lengthened, and water has difficulty flowing. As a result, both flood and drought disasters have intensified. (5) The Jianghan-Dongting Lake Plain is still undergoing rapid structural subsidence, but the rate of sedimentation exceeds the amount of tectonic settlement; hence, Dongting Lake is at risk of morphing into marshes and land.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    湖南省国土资源厅. 洞庭湖历史变迁地图集[M]. 长沙: 湖南地图出版社, 2011: 96-125.

    Department of Natural Resources of Human Province. Atlas of historical vicissitude in Donting Lake[M]. Changsha: Hunan Map Publishing Company, 2011: 96-125. (in Chinese)
    [2]
    李梦婕, 汪明, 史培军. 湖南暴雨洪涝灾害损失时空特征及影响因素分析[J]. 北京师范大学学报(自然科学版), 2014, 50(4): 429-434.

    LI M J, WANG M, SHI P J. Temporal-spatial distribution of rainstorm-flood disasters in Hunan, China and its affecting factors[J]. Journal of Beijing Normal University(Natural Science), 2014, 50(4): 429-434. (in Chinese with English abstract)
    [3]
    胡光伟. 洞庭湖水沙时空演变及其对水资源安全的影响研究[D]. 长沙: 湖南师范大学, 2014.

    HU G W. Study on the temporal-spatial evolvement of runoff and sediment of the Dongting Lake and its impact on water security[D]. Changsha: Hunan Normal University, 2014. (in Chinese with English abstract)
    [4]
    张洋, 陈孝康, 林旭, 等. 江汉盆地新生代早期河流演化研究: 来自地表河流和盆地钻孔碎屑锆石U-Pb年龄的约束[J]. 地质科技通报, 2023, 42(6): 106-117. doi: 10.19509/j.cnki.dzkq.tb20220154

    ZHANG Y, CHEN X K, LIN X, et al. Early Cenozoic drainage evolution in the Jianghan Basin: Constraints from detrital zircon U-Pb ages of surface rivers and cores in the basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 106-117. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220154
    [5]
    PHACH P V, LAI V C, SHAKIROV R B, et al. Tectonic activities and evolution of the Red River delta(north Viet Nam)in the Holocene[J]. Geotectonics, 2020, 54(1): 113-129. doi: 10.1134/S0016852120010094
    [6]
    JOSHI L M, KOTLIA B S, KOTHYARI G C, et al. Neotectonic landform development and associated mass movements along eastern Ramganga valley in the Kumaun Himalaya, India[J]. Geotectonics, 2021, 55(4): 543-562. doi: 10.1134/S0016852121040087
    [7]
    ARORA A, ARABAMERI A, PANDEY M, et al. Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India[J]. Science of the Total Environment, 2021, 750: 141565. doi: 10.1016/j.scitotenv.2020.141565
    [8]
    王先彦, 于洋. 试论河流地貌学的新进展和趋势[J]. 地质科技通报, 2024, 43(1): 150-159. doi: 10.19509/j.cnki.dzkq.tb20220259

    WANG X Y, YU Y. Progress in fluvial geomorphology and trend: A brief review[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 150-159. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220259
    [9]
    夏世威, 马强, 黄传炎, 等. 吉木萨尔-吉南凹陷构造演化及原型盆地[J]. 地质科技通报, 2024, 43(3): 170-179. doi: 10.19509/j.cnki.dzkq.tb20230095

    XIA S W, MA Q, HUANG C Y, et al. Tectonic evolution and prototype basins reconstruction in the Jimsar and Jinan Depressions, Eastern Junggar Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 170-179(in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230095
    [10]
    梁杏, 张人权, 皮建高, 等. 洞庭盆地第四纪构造活动特征[J]. 地质科技情报, 2001, 20(2): 11-14.

    LIANG X, ZHANG R Q, PI J G, et al. Characteristics of tectonic movement of Dongting Basin in the Quaternary period[J]. Geological Science and Technology Information, 2001, 20(2): 11-14. (in Chinese with English abstract)
    [11]
    苏成, 莫多闻, 王辉. 洞庭湖的形成、演变与洪涝灾害[J]. 水土保持研究, 2001, 8(2): 52-55.

    SU C, MO D W, WANG H. Evolution of Lake Dongting and its flood disasters[J]. Research of Soil and Water Conservation, 2001, 8(2): 52-55. (in Chinese with English abstract)
    [12]
    柏道远, 李彬, 姜文, 等. 洞庭盆地湘阴凹陷南段构造特征及动力机制[J]. 桂林理工大学学报, 2020, 40(2): 241-250.

    BAI D Y, LI B, JIANG W, et al. Structure characteristics and dynamic mechanisms of southern Xiangyin Sag of Dongting Basin[J]. Journal of Guilin University of Technology, 2020, 40(2): 241-250. (in Chinese with English abstract)
    [13]
    林旭, 刘静. 江汉和洞庭盆地与周缘造山带盆山耦合研究进展[J]. 地震地质, 2019, 41(2): 499-520.

    LIN X, LIU J. A review of mountain-basin coupling of Jianghan and Dongting Basins with their surrounding mountains[J]. Seismology and Geology, 2019, 41(2): 499-520. (in Chinese with English abstract)
    [14]
    柏道远, 李长安. 洞庭盆地第四纪地质研究现状[J]. 地质科技情报, 2010, 29(5): 1-8.

    BAI D Y, LI C A. Status of quaternary geology research of Dongting Basin[J]. Geological Science and Technology Information, 2010, 29(5): 1-8. (in Chinese with English abstract)
    [15]
    姚纪华, 刘晓群, 宋文杰, 等. 洞庭湖赤山凸起第四纪构造沉积演变特性[J]. 海洋地质与第四纪地质, 2020, 40(5): 160-168.

    YAO J H, LIU X Q, SONG W J, et al. Quaternary tectono-sedimentary evolution of Chishan Uplift in the Dongting Lake[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 160-168. (in Chinese with English abstract)
    [16]
    李春初. 构造沉降是控制近代洞庭湖演变的关键因素吗: 评《洞庭湖地质环境系统分析》[J]. 海洋与湖沼, 2000, 31(4): 460-464.

    LI C C. Tectonic subsidence in relation to modern Dongting Lake evolution: Review on "Dongting lake geology environmental system analysis"[J]. Oceanologia et Limnologia Sinica, 2000, 31(4): 460-464. (in Chinese with English abstract)
    [17]
    陈玉冬, 李德平, 高海丽, 等. 洞庭盆地东部地表垂直形变空间分布及原因分析[J]. 长江流域资源与环境, 2014, 23(增刊1): 14-20.

    CHEN Y D, LI D P, GAO H L, et al. Spatial distribution and reason analysis of the surface vertical deformation in the east of Dongting Basin[J]. Resources and Environment in the Yangtze Basin, 2014, 23(S1): 14-20. (in Chinese)
    [18]
    LIU C, SUI J Y, HE Y, et al. Changes in runoff and sediment load from major Chinese Rivers to the Pacific Ocean over the period 1955-2010[J]. International Journal of Sediment Research, 2013, 28(4): 486-495. doi: 10.1016/S1001-6279(14)60007-X
    [19]
    SZYMCZAK E, SZMYTKIEWICZ A. Sediment deposition in the Puck Lagoon(southern Baltic Sea, Poland)[J]. Baltica, 2014, 27(2): 105-118. doi: 10.5200/baltica.2014.27.20
    [20]
    APREDA C, D'AMBROSIO V, DI MARTINO F. A climate vulnerability and impact assessment model for complex urban systems[J]. Environmental Science & Policy, 2019, 93: 11-26.
    [21]
    AVAND M, MORADI H R, RAMAZANZADEH LASBOYEE M. Spatial prediction of future flood risk: An approach to the effects of climate change[J]. Geosciences, 2021, 11(1): 25. doi: 10.3390/geosciences11010025
    [22]
    LIUZZO L, BONO E, SAMMARTANO V, et al. Analysis of spatial and temporal rainfall trends in Sicily during the 1921-2012 period[J]. Theoretical and Applied Climatology, 2016, 126(1): 113-129.
    [23]
    顾西辉, 张强, 孔冬冬. 中国极端降水事件时空特征及其对夏季温度响应[J]. 地理学报, 2016, 71(5): 718-730.

    GU X H, ZHANG Q, KONG D D. Spatiotemporal patterns of extreme precipitation with their responses to summer temperature[J]. Acta Geographica Sinica, 2016, 71(5): 718-730. (in Chinese with English abstract)
    [24]
    LIU M X, XU X L, SUN A Y, et al. Is southwestern China experiencing more frequent precipitation extremes?[J]. Environmental Research Letters, 2014, 9(6): 064002. doi: 10.1088/1748-9326/9/6/064002
    [25]
    张艳林, 刘秀. 1960-2012年期间湖南省及周边地区气温变化趋势分析[J]. 湖南科技大学学报(自然科学版), 2017, 32(2): 105-113.

    ZHANG Y L, LIU X. Analysis of air temperature change in the vicinity of Hunan between 1960 and 2012[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2017, 32(2): 105-113. (in Chinese with English abstract)
    [26]
    孙葭, 黄一民, 吴华武. 6套格点数据中洞庭湖流域旱涝特征分析[J]. 湖南农业大学学报(自然科学版), 2018, 44(6): 629-637.

    SUN J, HUANG Y M, WU H W. Characterization of drought/flood of Dongting Lake Basin from six gridded precipitation data[J]. Journal of Hunan Agricultural University(Natural Sciences), 2018, 44(6): 629-637. (in Chinese with English abstract)
    [27]
    GUO L C, SU N, ZHU C Y, et al. How have the river discharges and sediment loads changed in the Changjiang River Basin downstream of the Three Gorges Dam?[J]. Journal of Hydrology, 2018, 560: 259-274. doi: 10.1016/j.jhydrol.2018.03.035
    [28]
    CHEN L, GE L S, WANG D W, et al. Multi-objective water-sediment optimal operation of cascade reservoirs in the Yellow River Basin[J]. Journal of Hydrology, 2022, 609: 127744. doi: 10.1016/j.jhydrol.2022.127744
    [29]
    赖晓鹤. 三峡建坝后河床冲刷过程与机理及其对入海泥沙通量的影响和预测[D]. 上海: 华东师范大学, 2018.

    LAI X H. The process and mechanism of river channel erosion below Three Gorges Dam: Its effect and prediction to sediment load into the sea[D]. Shanghai: East China Normal University, 2018. (in Chinese with English abstract)
    [30]
    许全喜, 胡功宇, 袁晶. 近50年来荆江三口分流分沙变化研究[J]. 泥沙研究, 2009(5): 1-8.

    XU Q X, HU G Y, YUAN J. Research on the flow and sediment diversion in the three outlets along Jingjiang River in recent 50 years[J]. Journal of Sediment Research, 2009(5): 1-8. (in Chinese with English abstract)
    [31]
    PAL S. Impact of Massanjore Dam on hydro-geomorphological modification of Mayurakshi River, eastern India[J]. Environment, Development and Sustainability, 2016, 18(3): 921-944. doi: 10.1007/s10668-015-9679-1
    [32]
    邹振华, 陆国宾, 李琼芳, 等. 长江干流大型水利工程对下游水温变化影响研究[J]. 水力发电学报, 2011, 30(5): 139-144.

    ZOU Z H, LU G B, LI Q F, et al. Water temperature change caused by large-scale water projects on the Yangtze River mainstream[J]. Journal of Hydroelectric Engineering, 2011, 30(5): 139-144. (in Chinese with English abstract)
    [33]
    吉红霞, 吴桂平, 刘元波. 近百年来洞庭湖堤垸空间变化及成因分析[J]. 长江流域资源与环境, 2014, 23(4): 566-572.

    JI H X, WU G P, LIU Y B. Spatial change of polder in Dongting Lake district and its driving forces in the Last Century[J]. Resources and Environment in the Yangtze Basin, 2014, 23(4): 566-572. (in Chinese with English abstract)
    [34]
    徐伟平, 康文星, 何介南. 洞庭湖蓄水能力的时空变化特征[J]. 水土保持学报, 2015, 29(3): 62-67.

    XU W P, KANG W X, HE J N. Temporal and spatial variation of storage capacity in Dongting Lake[J]. Journal of Soil and Water Conservation, 2015, 29(3): 62-67. (in Chinese with English abstract)
    [35]
    中国环境科学研究院. 2017年三峡工程生态与环境监测系统洞庭湖江湖生态监测重点站技术报告[R]. 北京: 中国环境科学研究院, 2018.

    Chinese Research Academy of Environmental Sciences. Technical report of the key station of Dongting Lake ecological monitoring station of the Three Gorges Project ecological and environmental monitoring system in 2017[R]. Beijing: Chinese Research Academy of Environmental Sciences. 2018. (in Chinese)
    [36]
    龚胜生. 两湖平原城镇发展的空间过程[J]. 地理学报, 1996, 51(6): 489-500.

    GONG S S. The spatial development of the two-lake plain's cities for the past more than 2 000 years[J]. Acta Geographica Sinica, 1996, 51(6): 489-500. (in Chinese)
    [37]
    田炯權. 清末民国时期湖广(湖南、湖北)地区的农业生产力及生产关系[J]. 清史研究, 1996(1): 67-78.

    TIAN J Q. Agricultural productivity and product relations in Huguang Province in late Qing dynasty China[J]. Studies in Qing History, 1996(1): 67-78. (in Chinese with English abstract)
    [38]
    施金炎. 洞庭史鉴: 洞庭湖区域发展研究[M]. 长沙: 湖南人民出版社, 2002: 479.

    SHI J Y. History of Dongting Lake: A study on the regional development of Dongting Lake[M]. Changsha: Hunan People's Publishing House, 2002: 479. (in Chinese)
    [39]
    杨顺顺. 洞庭湖生态经济区产业转型破围之路[J]. 人民论坛, 2021(31): 67-69.

    YANG S S. The way of industrial transformation of Dongting Lake Ecological Economic Zone[J]. People's Tribune, 2021(31): 67-69. (in Chinese)
    [40]
    胡鞍钢. 中国特色社会主义生态文明新时代[J]. 林业经济, 2017, 39(12): 3-5.

    HU A G. The new era of ecological civilization of socialism with Chinese characteristics[J]. Forestry Economics, 2017, 39(12): 3-5. (in Chinese with English abstract)
    [41]
    李长安. 长江中游主要水患区第四纪地质及新构造运动对水患形成的影响研究报告[R]. 武汉: 中国地质大学(武汉), 2003.

    LI C A. Research report on Quaternary geology and influence of neotectonic movement on flood formation in the main flood areas of the middle reaches of Yangtze River[R]. Wuhan: China University of Geosciences(Wuhan), 2003. (in Chinese)
    [42]
    皮建高, 潘晟. 洞庭湖区构造沉降特征及监测方案[J]. 中国地质灾害与防治学报, 2005, 16(1): 9-12.

    PI J G, PAN S. Characteristics of tectonic subsidence and monitoring project in Dongting Lake area[J]. The Chinese Journal of Geological Hazard and Control, 2005, 16(1): 9-12. (in Chinese with English abstract)
    [43]
    陈国金. 长江中游洪灾形成与防治的环境地质研究[J]. 资源环境与工程, 2009, 23(4): 401-405.

    CHEN G J. Study on environmental geology of formulation and prevention of flood disasters in the middle reach of the Yangtze River[J]. Resources Environment & Engineering, 2009, 23(4): 401-405. (in Chinese with English abstract)
    [44]
    皮建高, 张国梁, 梁杏, 等. 洞庭盆地第四纪沉积环境演变的初步分析[J]. 地质科技情报, 2001, 20(2): 6-10.

    PI J G, ZHANG G L, LIANG X, et al. Preliminary research on sedimentary environment evolution in Dongting Basin in the Quaternary period[J]. Geological Science and Technology Information, 2001, 20(2): 6-10. (in Chinese with English abstract)
    [45]
    苏岑. 洞庭湖演化变迁的遥感监测数学模型[J]. 国土资源遥感, 2016, 28(1): 178-182.

    SU C. Remote sensing monitoring mathematical model for the evolution of the Dongting Lake[J]. Remote Sensing for Land & Resources, 2016, 28(1): 178-182. (in Chinese with English abstract)
    [46]
    段文忠, 王明甫, 梁杏. 现代洞庭湖区泥沙淤积时空特征[C]//佚名. 环境地质研究(第三辑). 北京: 地震出版社, 1995: 179-185.

    DUAN W Z, WANG M F, LIANG X. Temporal and spatial characteristics of sediment deposition in modern Dongting Lake area[C]//Anon. Environmental geological research(Vol. 3). Beijing: Seismological Press, 1995: 179-185. (in Chinese with English abstract)
    [47]
    国务院三峡工程建设委员会办公室泥沙课题专家组, 中国长江三峡工程开发总公司泥沙专家组. 长江三峡工程泥沙问题研究: 长江三峡工程"九五"泥沙研究综合分析[R]. 北京: 知识产权出版社, 2000: 204-372.

    Expert Group on Sediment Issues of the Office of the Three Gorges Project Construction Committee of the State Council, Sediment Expert Group of China Three Gorges Project Development Corporation. Research on the sediment problem of the Three Gorges Project of the Yangtze River: A comprehensive analysis of the sediment research of the Ninth Five-Year Plan of the Three Gorges Project[R]. Beijing: Intellectual Property Publishing House, 2000: 204-372. (in Chinese)
    [48]
    施雅风, 姜彤, 苏布达, 等. 1840年以来长江大洪水演变与气候变化关系初探[J]. 湖泊科学, 2004, 16(4): 289-297.

    SHI Y F, JIANG T, SU B D, et al. Preliminary analysis on the relation between the evolution of heavy floods in the Yangtze River catchment and the climate changes since 1840[J]. Journal of Lake Science, 2004, 16(4): 289-297. (in Chinese with English abstract)
    [49]
    黄菊梅, 邹用昌, 彭嘉栋, 等. 1960-2011年洞庭湖区年降水量变化特征[J]. 气象与环境学报, 2013, 29(6): 81-86.

    HUANG J M, ZOU Y C, PENG J D, et al. Variation characteristics of annual precipitation from 1960 to 2011 in Dongting Lake area[J]. Journal of Meteorology and Environment, 2013, 29(6): 81-86. (in Chinese with English abstract)
    [50]
    胡毅鸿, 李景保. 1951-2015年洞庭湖区旱涝演变及典型年份旱涝急转特征分析[J]. 农业工程学报, 2017, 33(7): 107-115.

    HU Y H, LI J B. Analysis on evolution of drought-flood and its abrupt alternation in typical year from 1951 to 2015 in Dongting Lake area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(7): 107-115. (in Chinese with English abstract)
    [51]
    程智, 丁小俊, 徐敏, 等. 长江中下游地区典型旱涝急转气候特征研究[J]. 长江流域资源与环境, 2012, 21(增刊2): 115-120.

    CHENG Z, DING X J, XU M, et al. Climate characters of typical droughts-floods abrupt alternation events in the middle-lower reaches of the Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2012, 21(S2): 115-120. (in Chinese)
    [52]
    冯雪, 夏军强, 周美蓉, 等. 三峡水库运用后荆江段非均匀悬沙恢复特性[J]. 湖泊科学, 2021, 33(6): 1898-1905.

    FENG X, XIA J Q, ZHOU M R, et al. Transport characteristics of non-uniform suspended sediment in the Jingjiang reach after the Three Gorges Project operation[J]. Journal of Lake Sciences, 2021, 33(6): 1898-1905. (in Chinese with English abstract)
    [53]
    鲁西奇. 明清时期江汉平原的围垸: 从"水利工程"到"水利共同体"[M]. 武汉: 武汉大学出版社, 2011: 387.

    LU X Q. Cropland dikes in Jianghan Plain in Ming and Qing Dynasties: From "Water Conservancy Project" to "Water Conservancy Community"[M]. Wuhan: Wuhan University Press, 2011: 387. (in Chinese)
    [54]
    窦鸿身, 姜家虎. 洞庭湖[M]. 合肥: 中国科学技术大学出版社, 2003: 54.

    DOU H S, JIANG J H. Dongting Lake[M]. Hefei: University of Science and Technology Press, 2003: 54. (in Chinese)
    [55]
    张修桂. 云梦泽的演变与下荆江河曲的形成[J]. 复旦学报(社会科学版), 1980, 22(2): 40-48.

    ZHANG X G. The evolution of Yunmengze and the formation of lower Jingjiang River bend[J]. Fudan Journal(Social Sciences Edition), 1980, 22(2): 40-48. (in Chinese)
    [56]
    周凤琴. 云梦泽与荆江三角洲的历史变迁[J]. 湖泊科学, 1994, 6(1): 22-32.

    ZHOU F Q. Historical evolution of Yunmeng marsh and Jingjiang delta[J]. Journal of Lake Science, 1994, 6(1): 22-32. (in Chinese with English abstract)
    [57]
    周凤琴. 荆江历史变迁的阶段性特征[J]. 历史地理, 1992(1): 273-287.

    ZHOU F Q. The periodic characteristics of Jingjiang River in its changes in the past[J]. History Geography, 1992(1): 273-287. (in Chinese)
    [58]
    陈立德. 长江中游荆江和江汉-洞庭地区防洪减灾策略[J]. 科技导报, 2018, 36(15): 85-92.

    CHEN L D. Flood control strategies of Jingjiang and Jianghan-Dongting areas in the middle reaches of the Yangtze River[J]. Science & Technology Review, 2018, 36(15): 85-92. (in Chinese with English abstract)
    [59]
    周凤琴. 荆江近5 000年来洪水位变迁的初步探讨[J]. 历史地理, 1986(1): 46-53.

    ZHOU F Q. A tentative jnquiry into the changes in the flood level on Jingjiang River during the last 5 000 years[J]. History Geography, 1986(1): 46-53. (in Chinese)
    [60]
    李长安, 江焱生, 殷鸿福, 等. 长江中游人-水-地协调防洪对策的思考: 以江汉平原为例[C]//湖北省水利厅, 湖北省水利学会. 三峡工程建成后对长江中游的影响: 2007中国科协年会分论坛之十论文集. [出版地不详]: [出版社不详], 2007: 4.

    LI C A, JIANG Y S, YIN H F, et al. Thinking on the countermeasures of flood control coordinated by tourists, water and land in the Yangtze River: Taking Jianghan Plain as an example[C]//Hubei Provincial Department of Water Resources, Hubei Provincial Water Conservancy Society. The impact of the Three Gorges Project on the middle reaches of the Yangtze River after its completion: A collection of ten essays from the 2007 China Association for Science and Technology Annual Conference Sub Forum. [S. l. ]: [s. n. ], 2007: 4. (in Chinese)
    [61]
    何明民, 韩其为, 王崇浩. 荆江裁弯后河床长期冲刷的机理研究[C]//佚名. 第三届海峡两岸水利科技交流研讨会论文集(下册). 北京: [出版社不详], 1997: 854-867.

    HE M M, HAN Q W, WANG C H. Study on the mechanism of long-term scour of the Jingjiang River bed after bending[C]//Anon. Proceedings of the Third Cross-Straits Symposium on Water Science and Technology Exchange(Part Ⅱ). Beijing: [s. n. ], 1997: 854-867. (in Chinese)
    [62]
    聂芳容. 构建洞庭湖生态和经济新发展格局[J]. 湖南水利水电, 2021(2): 1-23.

    NIE F R. Constructing a new pattern of ecological and economic development of Dongting Lake[J]. Hunan Hydro & Power, 2021(2): 1-23. (in Chinese with English abstract)
    [63]
    钟小敏, 帅红, 李景保, 等. 水利工程群对洞庭湖城陵矶特征水位的综合影响[J]. 水资源与水工程学报, 2022, 33(5): 72-80.

    ZHONG X M, SHUAI H, LI J B, et al. Comprehensive effect of group hydrological projects on characteristic water level of Chenglingji in Dongting Lake[J]. Journal of Water Resources and Water Engineering, 2022, 33(5): 72-80. (in Chinese with English abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(102) PDF Downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return