留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

pH值和氧化剂对硫化锑氧化溶解的影响机制

江南 李小倩 周爱国 黄雨榴 潘国芳

江南, 李小倩, 周爱国, 黄雨榴, 潘国芳. pH值和氧化剂对硫化锑氧化溶解的影响机制[J]. 地质科技通报, 2020, 39(4): 76-84. doi: 10.19509/j.cnki.dzkq.2020.0410
引用本文: 江南, 李小倩, 周爱国, 黄雨榴, 潘国芳. pH值和氧化剂对硫化锑氧化溶解的影响机制[J]. 地质科技通报, 2020, 39(4): 76-84. doi: 10.19509/j.cnki.dzkq.2020.0410
Jiang Nan, Li Xiaoqian, Zhou Aiguo, Huang Yuliu, Pan Guofang. Effect of pH value and Fe(Ⅲ) on the oxidative dissolution of stibnite[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 76-84. doi: 10.19509/j.cnki.dzkq.2020.0410
Citation: Jiang Nan, Li Xiaoqian, Zhou Aiguo, Huang Yuliu, Pan Guofang. Effect of pH value and Fe(Ⅲ) on the oxidative dissolution of stibnite[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 76-84. doi: 10.19509/j.cnki.dzkq.2020.0410

pH值和氧化剂对硫化锑氧化溶解的影响机制

doi: 10.19509/j.cnki.dzkq.2020.0410
基金项目: 

国家自然科学基金项目 41672245

国家自然科学基金项目 41572344

中央高校基本科研业务费专项资金资助项目 CUGQYZX1714

详细信息
    作者简介:

    江南(1995-), 女, 现正攻读环境地质专业硕士学位, 主要从事矿山地质环境污染防控研究工作。E-mail:jn421003@163.com

    通讯作者:

    李小倩(1982-), 女, 副教授, 主要从事环境地质和污染同位素水文地质学的教学研究工作。E-mail:lixiaoqian@cug.edu.cn

  • 中图分类号: X142

Effect of pH value and Fe(Ⅲ) on the oxidative dissolution of stibnite

  • 摘要: 矿山开采活动影响下辉锑矿的氧化溶解是影响岩-土-水环境介质中锑的迁移转化及其环境效应的重要过程。目前对于辉锑矿溶解的研究主要关注动力学特征,对于它氧化溶解的途径、环境因素的影响、锑的释放规律等重要问题的认识还不明确。为探究碳酸盐岩矿区地下水中锑释放过程,选取重要环境因素pH值和Fe(Ⅲ),采用单因素控制条件下的批实验方法,精细刻画避光条件下辉锑矿(Sb2S3)氧化溶解速率及Sb和S氧化产物的组成特征。研究结果表明,Sb2S3的氧化溶解是一个产酸的过程,Sb和S的释放速率、途径和产物特征受pH值和Fe(Ⅲ)的显著影响。Sb2S3的氧化溶解速率由快变慢后趋于平衡,初始反应速率的量级为10-8 mol/(m2·s),平衡反应速率的量级为10-10 mol/(m2·s)。Sb的释放氧化速率随pH值的增加而增加,强碱条件下最有利于Sb的释放和氧化。强酸条件下,H2S、SO2气体逸出和S(0)的沉淀促进了Sb2S3的溶解,Sb(Ⅲ)和S(0)为主要产物。中性条件下,溶解形成的HS-经逐步氧化生成SO42-和少量S2O32-,Sb(Ⅲ)和Sb(Ⅴ)含量相近。强碱条件下,SbS33-和Sx-的生成显著提升了Sb2S3的氧化溶解速率,Sb(Ⅴ)和S2O32-是主要产物。Fe(Ⅲ)单独氧化作用时,Sb(Ⅴ)和S(0)是主要产物,锑释放的表观速率无显著提升,可能与SbOCl和S(0)的生成有关。研究表明,O2能够协同Fe(Ⅲ)氧化Sb2S3,但以Fe(Ⅲ)的作用为主导。本研究揭示了Sb2S3在不同pH值及氧化剂条件下氧化溶解的产物组成特征,提出了不同环境因素影响下的氧化溶解途径,证明碳酸盐岩天然缓冲地层更有利于锑的释放与氧化,岩溶地下水中锑诱发的环境效应会更为严重。

     

  • 图 1  实验选用的硫化锑试剂的XRD图谱

    Figure 1.  X-ray diffraction patterns of experimental Sb2S3

    图 2  不同条件下反应体系pH值和EC值的时间变化曲线

    Figure 2.  pH value and electrical conductivity value of suspension during oxidation dissolution under different conditions

    图 3  不同初始pH值和氧化剂对Sb2S3氧化溶解过程的影响

    a.SbTOT的释放;b.Sb(Ⅴ)在SbTOT中的占比;c.SO42-的产生;d.S2O32-(以S计)的产生, 其中pH=11.42参照右侧坐标轴读取, 其余参照左侧坐标轴读取

    Figure 3.  Effect of initial pH value and different oxidant on oxidative dissolution of Sb2S3

    图 4  不同氧化剂反应体系中[SO42-]/[SbTOT]和[STOT]/[SbTOT]摩尔比值的时间变化曲线

    Figure 4.  [SO42-]/[SbTOT] and [STOT]/[SbTOT] ratio during oxidation dissolution of Sb2S3 in the appearance of different oxidants

    表  1  不同条件下反应体系的DO浓度和ORP值

    Table  1.   Dissolved oxygen concentration and oxidation reduction potential of suspension under different conditions

    实验组编号 A(仅有O2避光体系) B
    (有氧Fe(Ⅲ)避光体系)
    C
    (缺氧Fe(Ⅲ)避光体系)
    A1 A2 A3 A4
    初始pH值 2.02 5.48 6.95 11.42 2 2
    DO/(mg·L-1) 7.5~8.7
    (8.40±0.40)
    8.1~9.0
    (8.59±0.28)
    8.1~9.5
    (8.71±0.41)
    8.1~8.8
    (8.42±0.21)
    8.1~9.4
    (8.71±0.39)
    0.7~0.8
    (0.760±0.054)
    ORP/mV 438~448
    (445±4.7)
    238~286
    (261±20)
    203~230
    (214±12)
    112~131
    (122±8.8)
    594~609
    (602±6.8)
    593~611
    (602±7.5)
    下载: 导出CSV

    表  2  不同氧化剂条件下S(0)和S2O32-的测试结果

    Table  2.   S(0) and S2O32- concentration in the appearance of different oxidants

    反应时间/h O2(A1)1 O2和Fe(Ⅲ)(B) Fe(Ⅲ)(C)1
    S(0) S(0) S2O32- S(0)
    ρB/(mg·L-1)
    2 n.a. 5.42 n.a. 3.24
    9 n.a. 10.53 n.a. 3.63
    30 4.03 9.83 1.99 11.34
    60 3.50 12.13 2.57 14.62
    96 10.08 13.24 4.94 12.62
    144 5.77 9.08 7.27 n.a.
    216 5.25 7.61 n.a. n.a.
    312 7.21 5.98 n.a. n.a.
    432 3.67 7.22 n.a. n.a.
    576 n.a. 5.88 n.a. n.a.
    注:1A1和C反应体系中均未检出S2O32-;n.a.表示浓度低于检出限
    下载: 导出CSV

    表  3  不同条件下反应体系中锑的平衡反应速率和初始反应速率

    Table  3.   Antimony equilibrium reaction rate and initial reaction rate under different conditions

    实验组 2~576 h
    平衡反应速率/(mol·m-2·s-1)
    0~2 h
    初始反应速率/(mol·m-2·s-1)
    RSbTOT平衡 RSb(Ⅴ)平衡 RSbTOT初始 RSb(Ⅴ)初始
    A1 1.8×10-10 1.2×10-10 1.6×10-8 2.8×10-9
    A2 2.3×10-10 2.0×10-10 1.4×10-8 2.9×10-9
    A3 2.2×10-10 1.8×10-10 1.3×10-8 7.1×10-10
    A4 3.0×10-10 2.8×10-10 2.2×10-8 6.6×10-9
    B 1.3×10-10 1.3×10-10 6.6×10-9 6.4×10-9
    C 9.8×10-11 9.8×10-11 5.9×10-9 5.7×10-9
    下载: 导出CSV
  • [1] 刘飞, 邓道贵, 祝鹏飞, 等.水环境中不同形态锑的迁移转化及影响因素研究进展[J].安全与环境学报, 2014, 14(2):219-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aqyhjxb201402046
    [2] 朱静, 郭建阳, 王立英, 等.锑的环境地球化学研究进展概述[J].地球与环境, 2010, 38(1):109-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx201001019
    [3] He M, Wang X, Wu F, et al.Antimony pollution in China[J].Science of the Total Environment, 2012, 421/422:41-50. doi: 10.1016/j.scitotenv.2011.06.009
    [4] Fu Z, Wu F, Mo C, et al.Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China[J].Science of the Total Environment, 2016, 539:97-104. doi: 10.1016/j.scitotenv.2015.08.146
    [5] 王修, 王建平, 刘冲昊, 等.我国锑资源形势分析及可持续发展策略[J].中国矿业, 2014(5):9-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201405004
    [6] 张许州, 任景玲, 刘宗广, 等.浙闽沿岸海域总溶解态无机锑的分布及影响因素研究[J].环境科学, 2014, 35(2):547-554. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201402021
    [7] Mitsunobu S, Takahashi Y, Terada Y, et al.Antimony(Ⅴ) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides[J].Environmental Science & Technology, 2010, 44(10):3712-3718. http://www.ncbi.nlm.nih.gov/pubmed/20426473
    [8] Li J, Zheng B, He Y, et al.Antimony contamination, consequences and removal techniques:A review[J].Ecotoxicol Environ Saf., 2018, 156:125-134. doi: 10.1016/j.ecoenv.2018.03.024
    [9] 吴丰昌, 郑建, 潘响亮, 等.锑的环境生物地球化学循环与效应研究展望[J].地球科学进展, 2008, 23(4):350-356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200804004
    [10] Multani R S, Feldmann T, Demopoulos G P.Antimony in the metallurgical industry:A review of its chemistry and environmental stabilization options[J].Hydrometallurgy, 2016, 164:141-153. doi: 10.1016/j.hydromet.2016.06.014
    [11] Rakshit S, Sarkar D, Punamiya P, et al.Antimony sorption at gibbsite-water interface[J].Chemosphere, 2011, 84(4):480-483. doi: 10.1016/j.chemosphere.2011.03.028
    [12] 杨森, 谢先军, 肖紫怡, 等.氨基三乙酸对污染土壤中镉活化迁移的影响[J].地质科技情报, 2019, 38(2):243-248. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201902028
    [13] 李立刚, 周建伟, 李伟洁, 等.某特大型锑矿区废石中锑的释放规律[J].地质科技情报, 2018, 37(5):215-221. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805029
    [14] 方传棣, 成金华, 赵鹏大, 等.长江经济带矿区土壤重金属污染特征与评价[J].地质科技情报, 2019, 38(5):230-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201905024
    [15] 武亚遵, 潘春芳, 林云, 等.典型华北型煤矿区主要充水含水层水文地球化学特征及控制因素[J].地质科技情报, 2018, 37(5):191-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805026
    [16] He M, Wang N, Long X, et al.Antimony speciation in the environment:Recent advances in understanding the biogeochemical processes and ecological effects[J].Journal of Environmental Sciences, 2019, 75:14-39. doi: 10.1016/j.jes.2018.05.023
    [17] Wen B, Zhou A, Zhou J, et al.Coupled S and Sr isotope evidences for elevated arsenic concentrations in groundwater from the world's largest antimony mine, central China[J].Journal of Hydrology, 2017, 557:211-221. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=efa89af6bcfef71bc266b39c382b15fd
    [18] 莫昌琍, 吴丰昌, 符志友, 等.湖南锡矿山锑矿区农用土壤锑、砷及汞的污染状况初探[J].矿物学报, 2013, 33(3):344-350. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201303011
    [19] He M, Wang N, Long X, et al.Antimony speciation in the environment:Recent advances in understanding the biogeochemical processes and ecological effects[J].Journal of environmental sciences, 2018, 75:14-39.
    [20] Zhou J, Nyirenda M T, Xie L, et al.Mine waste acidic potential and distribution of antimony and arsenic in waters of the Xikuangshan Mine, China[J].Applied Geochemistry, 2016, 77:52-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbe4216246db3301647444f03ece11a2
    [21] Guo W, Fu Z, Wang H, et al.Environmental geochemical and spatial/temporal behavior of total and speciation of antimony in typical contaminated aquatic environment from Xikuangshan, China[J].Microchemical Journal, 2018, 137:181-189. doi: 10.1016/j.microc.2017.10.010
    [22] Wilson S C, Lockwood P V, Ashley P M, et al.The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic:A critical review[J].Environmental Pollution, 2010, 158(5):1169-1181. doi: 10.1016/j.envpol.2009.10.045
    [23] 王华伟, 李晓月, 李卫华, 等.pH和络合剂对五价锑在水钠锰矿和水铁矿表面吸附行为的影响[J].环境科学, 2017, 38(1):180-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201701021
    [24] Gleisner M, Herbert R B, Kockum P C F.Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen[J].Chemical Geology, 2006, 225(1/2):16-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4287a7433d6d1aaad951e1cdfab3de3b
    [25] Biver M, Shotyk W.Stibnite(Sb2S3) oxidative dissolution kinetics from pH 1 to 11[J].Geochimica et Cosmochimica Acta, 2012, 79:127-139. doi: 10.1016/j.gca.2011.11.033
    [26] Hu X, He M, Kong L.Photopromoted oxidative dissolution of stibnite[J].Applied Geochemistry, 2015, 61:53-61. doi: 10.1016/j.apgeochem.2015.05.014
    [27] Herath I, Vithanage M, Bundschuh J.Antimony as a global dilemma:Geochemistry, mobility, fate and transport[J].Environmental Pollution, 2017, 223:545-559. doi: 10.1016/j.envpol.2017.01.057
    [28] Morse J W, Millero F J, Cornwell J C, et al.The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters[J].Earth-Science Reviews, 1987, 24(1):1-42. doi: 10.1016/0012-8252(87)90046-8
    [29] Leuz A K, Johnson C A.Oxidation of Sb(Ⅲ) to Sb(Ⅴ) by O2 and H2O2 in aqueous solutions[J].Geochimica et Cosmochimica Acta, 2005, 69(5):1165-1172. doi: 10.1016/j.gca.2004.08.019
    [30] Borilova S, Mandl M, Zeman J, et al.Can sulfate be the first dominant aqueous sulfur species formed in the oxidation of pyrite by Acidithiobacillus ferrooxidans[J].Frontiers in Microbiology, 2018, 9:3134. doi: 10.3389/fmicb.2018.03134
    [31] Raschman P, Emília S.Kinetics of leaching of stibnite by mixed Na2S and NaOH solutions[J].Hydrometallurgy, 2012, 113:60-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d20ca2c235535f099c25485aa9d4729e
    [32] Gök Ö.Catalytic production of antimonate through alkaline leaching of stibnite concentrate[J].Hydrometallurgy, 2014, 149:23-30. doi: 10.1016/j.hydromet.2014.06.007
    [33] Kamyshny A, Borkenstein C G, Ferdelman T G.Protocol forquantitative detection of elemental sulfur and polysulfide zero-valent sulfur distribution in natural aquatic samples[J].Geostandards and Geoanalytical Research, 2009, 33(3):415-435. doi: 10.1111/j.1751-908X.2009.00907.x
    [34] 温冰.湖南锡矿山水环境中锑来源及迁移转化的多元同位素解析[D].武汉: 中国地质大学(武汉), 2017.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  715
  • PDF下载量:  1732
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-24

目录

    /

    返回文章
    返回