留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正安地区五峰组-龙马溪组页岩储层特征及控制因素

张福 黄艺 蓝宝锋 李龙 刘婷 刘睿 江定川

张福, 黄艺, 蓝宝锋, 李龙, 刘婷, 刘睿, 江定川. 正安地区五峰组-龙马溪组页岩储层特征及控制因素[J]. 地质科技通报, 2021, 40(1): 49-56. doi: 10.19509/j.cnki.dzkq.2021.0016
引用本文: 张福, 黄艺, 蓝宝锋, 李龙, 刘婷, 刘睿, 江定川. 正安地区五峰组-龙马溪组页岩储层特征及控制因素[J]. 地质科技通报, 2021, 40(1): 49-56. doi: 10.19509/j.cnki.dzkq.2021.0016
Zhang Fu, Huang Yi, Lan Baofeng, Li Long, Liu Ting, Liu Rui, Jiang Dingchuan. Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 49-56. doi: 10.19509/j.cnki.dzkq.2021.0016
Citation: Zhang Fu, Huang Yi, Lan Baofeng, Li Long, Liu Ting, Liu Rui, Jiang Dingchuan. Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 49-56. doi: 10.19509/j.cnki.dzkq.2021.0016

正安地区五峰组-龙马溪组页岩储层特征及控制因素

doi: 10.19509/j.cnki.dzkq.2021.0016
基金项目: 

国家自然科学基金项目 41702157

贵州省地勘基金项目 GZMC-ZG20192014-4

详细信息
    作者简介:

    张福(1961-), 男, 高级工程师, 主要从事页岩气地质评价和勘探开发管理工作。E-mail:hdzf1212@163.com

    通讯作者:

    刘睿(1988-), 男, 副研究员, 主要从事油气成藏动力学及非常规油气地质研究工作。E-mail:liurui@outlook.com

  • 中图分类号: P618.13

Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area

  • 摘要: 四川盆地以东的复杂构造变形带拥有巨大的页岩气资源潜力,但目前勘探开发不足。为了支撑复杂构造变形带的页岩气勘探开发,针对复杂构造变形带内正安地区五峰组-龙马溪组页岩钻井岩心,开展了矿物学、有机地球化学、岩石学分析测试,探讨了页岩储层特征及主控因素。正安地区五峰组-龙马溪组页岩储层石英质量分数高达60%~80%,以硅质页岩为主,脆性程度高。石英主要是无机成因,包括原生碎屑石英沉积和黏土矿物转化而成的次生石英。原生碎屑石英、层状黏土颗粒的压实脆裂增大了孔隙空间,但次生石英的沉淀、充填减小了矿物颗粒间的骨架孔隙。正安地区五峰组-龙马溪组页岩储层总w(TOC)高达5.8%,有机质中无定形腐泥组大于80%,沥青反射率介于2.6%~3.1%,有机质热解而成的有机孔显著增大了孔隙度,但有机孔隙后期遭受构造挤压变形,多坍塌成狭长的多边形。

     

  • 图 1  四川盆地(a)和正安地区(b)五峰组-龙马溪组沉积相图

    Figure 1.  Sedimentary facies of the Wufeng Formation-Longmaxi Formation shale in Sichuan Basin (a) and Zheng′an area (b)

    图 2  正安地区五峰组-龙马溪组页岩石英、碳酸盐矿物、黏土矿物、总w(TOC)以及氦气孔隙度

    Figure 2.  Proportions of quartz, carbonates, clays, total organic carbon(TOC) content, and porosity of the Wufeng Formation-Longmaxi Formation shale in Zheng′an area

    图 3  正安地区及邻近地区五峰组-龙马溪组页岩X射线衍射矿物组分三角图(XY1、TY1井数据来源于文献[19, 20])

    Figure 3.  Ternary plot of X-ray diffraction mineral composition in the Wufeng Formation-Longmaxi Formation shale of the Zheng′an area and its periphery area

    图 4  正安地区五峰组-龙马溪组页岩孔隙度与总w(TOC)(a)、石英组分(b)、黏土矿物组分(c)交会图

    Figure 4.  Cross plots of porosity and total organic carbon(TOC) content (a), quartz proportion (b), and clay minerals proportion (c) in Wufeng Formation-Longmaxi Formation shale in Zheng′an area

    图 5  正安地区五峰组-龙马溪组页岩扫描电镜照片

    a.狭长的多边形有机孔;b.白云石溶蚀孔;c.次生石英颗粒; d.碎屑石英压裂隙;e.层状黏土压实破裂裂纹(缝);f.层状黏土压实弯曲层间开裂纹(缝)

    Figure 5.  Scanning electron microscope(SEM) of the Wufeng Fomration-Longmaxi Formation shale in Zheng′an area

    图 6  正安地区与XY1、XY1井五峰组-龙马溪组页岩石英与黏土矿物组分交会图(a)、石英组分与总w(TOC)交会图(b)(XY1、XY 1井数据来源于文献[19-20];AY1井数据来源于文献[27])

    Figure 6.  Cross plots of quartz and clay minerals proportions (a), and quartz proportion and total organic carbon(TOC) content (b) in Wufeng Formation-Longmaxi Formation shale of the Well XY1 and Well TY1 in Zheng′an area

    表  1  正安地区五峰组-龙马溪组页岩有机质显微组分特征

    Table  1.   Macerals of organic matter in the Wufeng Formation-Longmaxi Formation shale of the Zheng′an area

    钻井 深度/m 层位 腐泥组φB/% 壳质组φB/% 镜质组φB/% 惰质组φB/% 类型
    浮游藻类体 腐泥组无定形体 角质体 木栓质体 树脂体 孢粉体 腐殖无定形体 菌孢体 底栖藻无定形体 富氢镜质体 正常镜质体 丝质体 类型指数 类型
    AY2 1957 龙马溪组 / 88 / / / / / / 10 / 2 / 92
    1959 / 86 / / / / / / 12 / 2 / 91
    1963 / 88 / / / / / / 11 / 1 / 93
    1969 / 83 / / / / / / 13 / 4 / 87
    1972 五峰组 / 90 / / / / / / 8 / 2 / 93
    1975 / 88 / / / / / / 9 / 3 / 90
    AY3 2471 龙马溪组 / 90 / / / / / / 8 / 2 / 93
    2474 / 90 / / / / / / 8 / 2 / 93
    2477 / 90 / / / / / / 7 / 3 / 91
    2480 / 89 / / / / / / 9 / 2 / 92
    2482 / 86 / / / / / / 10 / 4 / 88
    2485 / 88 / / / / / / 8 / 4 / 89
    2488 五峰组 / 89 / / / / / / 9 / 2 / 92
    2492 / 88 / / / / / / 9 / 3 / 90
    下载: 导出CSV
  • [1] Hao F, Zou H, Lu Y.Mechanisms of shale gas storage:Implications for shale gas exploration in China[J].AAPG Bulletin, 2013, 97(8):1325-1346. doi: 10.1306/02141312091
    [2] 邹才能, 董大忠, 王玉满, 等.中国页岩气特征、挑战及前景:二[J].石油勘探与开发, 2016, 43(2):166-178. doi: 10.11698/PED.2016.02.02
    [3] 魏威, 王飞宇.页岩油气资源体系成藏控制因素与储层特征[J].地质科技情报, 2014, 33(1):150-156. doi: 10.3969/j.issn.1009-6248.2014.01.012
    [4] 郭彤楼, 刘若冰.复杂构造区高演化程度海相页岩气勘探突破的启示:以四川盆地东部盆缘JY1井为例[J].天然气地球科学, 2013, 24(4):643-651. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201304000.htm
    [5] 马永生, 蔡勋育, 赵培荣.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发, 2018, 45(4):561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm
    [6] 赵文智, 李建忠, 杨涛, 等.中国南方海相页岩气成藏差异性比较与意义[J].石油勘探与开发, 2016, 43(4):1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm
    [7] 胡晨林, 张元福, 王志峰, 等.贵州北部龙马溪组页岩特征及页岩气勘探前景[J].特种油气藏, 2014, 21(4):44-47, 153. doi: 10.3969/j.issn.1006-6535.2014.04.010
    [8] 程璇, 徐尚, 郝芳, 等.松辽盆地嫩江组富有机质页岩有机孔隙成因[J].地质科技情报, 2019, 38(4):62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904008.htm
    [9] Milliken K L, Rudnicki M, Awwiller D N, et al.Organic matter-hosted pore system, Marcellus Formation(Devonian), Pennsylvania[J].AAPG Bulletin, 2013, 97(2):177-200. doi: 10.1306/07231212048
    [10] Baruch E T, Kennedy M J, Löhr S C, et al.Feldspar dissolution-enhanced porosity in Paleoproterozoic shale reservoir facies from the Barney Creek Formation(McArthur Basin, Australia)[J].AAPG Bulletin, 2015, 99(9):1745-1770. doi: 10.1306/04061514181
    [11] 徐勇, 吕成福, 陈国俊, 等.川东南地区志留系龙马溪组页岩孔隙结构特征[J].地质科技情报, 2015, 34(6):108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506015.htm
    [12] 翟刚毅, 包书景, 庞飞, 等.贵州遵义地区安场向斜"四层楼"页岩油气成藏模式研究[J].中国地质, 2017, 44(1):1-12. doi: 10.3969/j.issn.1006-9372.2017.01.001
    [13] 吴小力, 李荣西, 李尚儒, 等.下扬子地区海陆过渡相页岩气成藏条件与主控因素:以萍乐坳陷二叠系乐平组为例[J].地质科技情报, 2018, 37(1):160-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801022.htm
    [14] 梅廉夫, 戴少武, 沈传波, 等.中、下扬子区中、新生代陆内对冲带的形成及解体[J].地质科技情报, 2008, 27(4):1-7, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200804002.htm
    [15] 雷子慧, 赵安坤, 余谦, 等.贵州北部安场向斜下志留统龙马溪组页岩气保存条件[J].地质科技情报, 2016, 35(4):121-127. doi: 10.3969/j.issn.1009-6248.2016.04.002
    [16] 张浩然, 姜华, 陈志勇, 等.四川盆地及周缘地区加里东运动幕次研究现状综述[J].地质科技通报, 2020, 39(5):118-126. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10057.shtml
    [17] 苗凤彬, 彭中勤, 汪宗欣, 等.雪峰隆起西缘下寒武统牛蹄塘组页岩裂缝发育特征及主控因素[J].地质科技通报, 2020, 39(2):31-42. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9972.shtml
    [18] Rafael F M, Martin F.Standardisation, calibration and correlation of the Kübler-index and the vitrinite/bituminite reflectance:An inter-laboratory and field related study[J].Swiss Journal of Geosciences, 2012, 105(2):153-170. doi: 10.1007/s00015-012-0110-8
    [19] 李博, 于炳松, 史淼.富有机质页岩有机质孔隙度研究:以黔西北下志留统五峰-龙马溪组为例[J].矿物岩石, 2019, 39(1):92-101. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201901011.htm
    [20] 张鹏, 黄宇琪, 张金川, 等.黔西北五峰组-龙马溪组页岩气成藏条件综合评价[J].山东科技大学学报:自然科学版, 2019, 38(3):25-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201903003.htm
    [21] 王超, 张柏桥, 陆永潮, 等.焦石坝地区五峰组-龙马溪组一段页岩岩相展布特征及发育主控因素[J].石油学报, 2018, 39(6):631-644. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201806003.htm
    [22] 杨锐, 何生, 胡东风, 等.焦石坝地区五峰组-龙马溪组页岩孔隙结构特征及其主控因素[J].地质科技情报, 2015, 34(5):105-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505017.htm
    [23] 张晓明, 石万忠, 徐清海, 等.四川盆地焦石坝地区页岩气储层特征及控制因素[J].石油学报, 2015, 36(8):926-939, 953. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201508004.htm
    [24] 钟城, 秦启荣, 周吉羚, 等.川东南丁山地区龙马溪组富有机质页岩脆性评价[J].地质科技情报, 2018, 37(4):167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804023.htm
    [25] Lu Y, Hao F, Lu Y, et al.Lithofacies and depositional mechanism of the Ordovician-Silurian Wufeng-Longmaxi organic-rich shales in the Upper Yangtze area, southern China[J].AAPG Bulletin, 2020, 104(1):97-129. http://www.researchgate.net/publication/340443915_Lithofacies_and_depositional_mechanisms_of_the_Ordovician-Silurian_Wufeng-Longmaxi_organic-rich_shales_in_the_Upper_Yangtze_area_southern_China
    [26] 孙川翔, 聂海宽, 刘光祥, 等.石英矿物类型及其对页岩气富集开采的控制:以四川盆地及其周缘五峰组-龙马溪组为例[J].地球科学, 2019, 44(11):3692-3704. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911009.htm
    [27] 葛明娜, 庞飞, 包书景.贵州遵义五峰组-龙马溪组页岩微观孔隙特征及其对含气性控制:以安页1井为例[J].石油实验地质, 2019, 41(1):23-30.
    [28] 申宝剑, 仰云峰, 腾格尔, 等.四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨:以焦页1井五峰-龙马溪组为例[J].石油实验地质, 2016, 38(4):480-488, 495. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201604010.htm
    [29] Liu R, Hao F, Engelder T, et al.Influence of tectonic exhumation on porosity of Wufeng-Longmaxi shale in the Fuling gas field of the eastern Sichuan Basin, China[J].AAPG Bulletin, 2020, 104(4):939-959. doi: 10.1306/08161918071
    [30] Hu H, Hao F, Lin J, et al.Organic matter-hosted pore system in the Wufeng-Longmaxi(O3w-S11) shale, Jiaoshiba area, eastern Sichuan Basin, China[J].International Journal of Coal Geology, 2017, 173:40-50. doi: 10.1016/j.coal.2017.02.004
    [31] Curtis M E, Cardott B J, Sondergeld C H, et al.Development of organic porosity in the Woodford Shale with increasing thermal maturity[J].International Journal of Coal Geology, 2012, 103:26-31. doi: 10.1016/j.coal.2012.08.004
    [32] Han Y, Horsfield B, Wirth R, et al.Oil retention and porosity evolution in organic-rich shales[J].AAPG Bulletin, 2017, 101(6):807-827. doi: 10.1306/09221616069
    [33] Mastalerz M, Schimmelmann A, Drobniak A, et al.Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology, gas adsorption, and mercury intrusion[J].AAPG Bulletin, 2013, 97(10):1621-1643. doi: 10.1306/04011312194
    [34] Hsuü K J, Shu S, Jiliang L, et al.Mesozoic overthrust tectonics in South China[J].Geology, 1988, 16(5):418-421. doi: 10.1130/0091-7613(1988)016<0418:MOTISC>2.3.CO;2
    [35] Yan D P, Zhou M F, Song H L, et al.Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block(South China)[J].Tectonophysics, 2003, 361(3/4):239-254.
    [36] Eliyahu M, Emmanuel S, Day-Stirrat R J, et al.Mechanical properties of organic matter in shales mapped at the nanometer scale[J].Marine and Petroleum Geology, 2015, 59:294-304. http://www.sciencedirect.com/science/article/pii/S0264817214002967
    [37] Sone H, Morales L F, Dresen G.Microscopic observations of shale deformation from in-situ deformation experiments conducted under a scanning electron microscope[C]//49th U.S.Rock Mechanics/Geomechanics Symposium.California: American Rock Mechanics Association, 2015: 15-27.
    [38] Wang G.Deformation of organic matter and its effect on pores in mudrocks[J].AAPG Bulletin, 2020, 104(1):21-36. http://www.researchgate.net/publication/338394921_Deformation_of_organic_matter_and_its_effect_on_pores_in_mud_rocks
    [39] Lohr S C, Baruch E T, Hall P A, et al.Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J].Organic Geochemistry, 2015, 87:119-132. http://www.sciencedirect.com/science/article/pii/S0146638015001527
    [40] Milliken K L, Ko L T, Pommer M, et al.Sem petrography of eastern Mediterranean Sapropels:Analogue data for assessing organic matter in oil and gas shales[J].Journal of Sedimentary Research, 2014, 84(11):961-974. http://adsabs.harvard.edu/abs/2014jsedr..84..961m
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1421
  • PDF下载量:  5130
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-21

目录

    /

    返回文章
    返回