留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地球物理技术预测莺歌海盆地低孔低渗储层孔隙度

李芳 邓勇 胡林 周凡

李芳, 邓勇, 胡林, 周凡. 地球物理技术预测莺歌海盆地低孔低渗储层孔隙度[J]. 地质科技通报, 2022, 41(4): 84-90. doi: 10.19509/j.cnki.dzkq.2021.0060
引用本文: 李芳, 邓勇, 胡林, 周凡. 地球物理技术预测莺歌海盆地低孔低渗储层孔隙度[J]. 地质科技通报, 2022, 41(4): 84-90. doi: 10.19509/j.cnki.dzkq.2021.0060
Li Fang, Deng Yong, Hu Lin, Zhou Fan. Porosity prediction by geophysics technology at low-porosity and low-permeability reservoir of the Yinggehai Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 84-90. doi: 10.19509/j.cnki.dzkq.2021.0060
Citation: Li Fang, Deng Yong, Hu Lin, Zhou Fan. Porosity prediction by geophysics technology at low-porosity and low-permeability reservoir of the Yinggehai Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 84-90. doi: 10.19509/j.cnki.dzkq.2021.0060

地球物理技术预测莺歌海盆地低孔低渗储层孔隙度

doi: 10.19509/j.cnki.dzkq.2021.0060
基金项目: 

中海石油(中国)有限公司科研项目 CNOOC-KJ135ZDXM38ZJ02ZJ

详细信息
    作者简介:

    李芳(1986-), 女, 工程师, 主要从事海洋地震资料储层预测相关研究工作。E-mail: lifang9@cnooc.com.cn

  • 中图分类号: TE53

Porosity prediction by geophysics technology at low-porosity and low-permeability reservoir of the Yinggehai Basin

  • 摘要:

    莺歌海盆地乐东区中深层是南海西部海域勘探的重要区域, 其中, L10区钻遇储层表现为低孔-特低渗特征, 优质储层是制约该区下一步勘探与开发的主要问题。通过区域岩石物理规律分析, 建立了上覆泥岩速度及本身孔隙度变化的AVO关系模板, 提高利用AVO分析技术预测储层物性的有效性。针对本区薄层发育及薄层孔隙度预测误差大难题, 研发基于阻抗校正公式的孔隙度预测方法, 提高了薄层孔隙度预测的精度。数值模拟及实际钻井均证实了方法的有效性和可靠性, 为乐东区中深层优质储层勘探部署指明方向。

     

  • 图 1  过L1井地震剖面图

    Figure 1.  Seismic profile across the Well L1

    图 2  L1井岩石物理交会图

    Figure 2.  Rock physical intersection analysis diagram of Well L1

    图 3  L1井气层AVO理论正演模拟图

    Figure 3.  AVO forward modelling diagram of Well L1

    图 4  不同流体AVO随孔隙度变化理论模板图

    Figure 4.  Theoretical template of AVO variation with porosity for different fluids

    图 5  不同背景速度时AVO随孔隙度变化理论模板图

    Figure 5.  Theoretical template of AVO variation with porosity at different background speeds

    图 6  L10区中深层储层孔隙度敏感参数分析图

    Figure 6.  Analysis of porosity sensitive parameter of the moderate deep and deep reservoirs in the L10 zone

    图 7  不同厚度反演阻抗与真实阻抗模型测试对比图

    Figure 7.  Comparison of inversion impedance and realimpedance model with different thicknesses

    图 8  阻抗与对数振幅模型测试图

    Figure 8.  Model test of impedance and logarithmic amplitude

    图 9  薄层下不同阻抗与厚度关系测试图

    Figure 9.  Model test of different impedance and thickness of thin layers

    图 10  实际资料测试图

    Figure 10.  Geological data testing graphics

    图 11  地球物理技术精细预测低孔低渗气藏孔隙度流程

    Figure 11.  Technique workflow of porosity prediction by geophysic technology for low-porosity and low-permeability gas reservoirs

    图 12  优质储层孔隙度预测图

    Figure 12.  Porosity prediction of high-quality reservoirs

  • [1] 王振峰, 胡代圣. 莺歌海盆地中央泥拱构造带大气田勘探方向[J]. 天然气工业, 1999, 19(1): 28-30. doi: 10.3321/j.issn:1000-0976.1999.01.008

    Wang Z F, Hu D S. Prospecting for grand gas fields in the central mud diapir structure belt in Yinggehai Basin[J]. Natural Gas Industry, 1999, 19(1): 28-30(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0976.1999.01.008
    [2] 谢玉洪, 范彩伟. 莺歌海盆地东方区黄流组储层成因新认识[J]. 中国海上油气, 2010, 22(6): 355-359. doi: 10.3969/j.issn.1673-1506.2010.06.001

    Xie Y H, Fan C W. Some new knowledge about the origin of Huangliu Formation reservoirs in Dongfang area, Yinggehai Basin[J]. China Offshore Oil and Gas, 2010, 22(6): 355-359(in Chinese with English abstract). doi: 10.3969/j.issn.1673-1506.2010.06.001
    [3] 周家雄, 刘薇薇, 马光克, 等. 高温高压储层的精细地震属性预测技术: 以莺歌海盆地为例[J]. 地质勘探, 2013, 33(2): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201302001.htm

    Zhou J X, Liu W W, Ma G K, et al. Fine description and prediction of seismic attributes of HPHT gas reservoirs in the Yinggehai Basin[J]. Geological Prospecting, 2013, 33(2): 7-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201302001.htm
    [4] 马光克, 李芳, 周家雄, 等. 高温高压欠压实地层烃类检测方法研究[J]. 地质科技情报, 2015, 34(6): 221-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506032.htm

    Ma G K, Li F, Zhou J X, et al. Hydrocarbon detection for high temperature and high pressure under compacted formation: A case study of Dongfang X District in Yinggehai Basin[J]. Geological Science and Technology Information, 2015, 34(6): 221-226(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506032.htm
    [5] 李芳, 邓勇, 刘仕友, 等. 欠压实低速泥岩对地震反射及AVO的影响[J]. 地质科技情报, 2017, 36(5): 244-248. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705034.htm

    Li F, Deng Y, Liu S Y, et al. Under compacted low-velocity shale influence on seismic reflection and AVO features[J]. Geological Science and Technology Information, 2017, 36(5): 244-248(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705034.htm
    [6] 张建新, 范彩伟, 谭建财, 等. 莺歌海盆地中新世沉积体系演化特征及勘探意义[J]. 地质科技情报, 2019, 38(6): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906008.htm

    Zhang J X, Fan C W, Tan J C, et al. Evolution characteristics of sedimentary system in Yinggehai Basin in Miocene and its exploration significance[J]. Geological Science and Technology Information, 2019, 38(6): 51-59(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906008.htm
    [7] Wyllie M R, Gregory A R, Gardner G H F. An experimental investigation of factors affecting elastic wave velocities in porous media[J]. Geophysics, 1958, 23(3): 459-493. doi: 10.1190/1.1438493
    [8] 喻岳钰, 杨长春, 王彦飞, 等. 叠前弹性阻抗反演及其在含气储层预测中的应用[J]. 地球物理学进展, 2009, 24(2): 574-580. doi: 10.3969/j.issn.1004-2903.2009.02.027

    Yu Y Y, Yang C C, Wang Y F, et al. Application of pre-stack seismic elastic impedance inversion to gas reservoir[J]. Progress in Geophysics, 2009, 24(2): 574-580(in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2009.02.027
    [9] 牛聪, 刘春成, 刘志斌, 等. 扩展弹性阻抗反演在储层预测中的应用[J]. 石油地球物理勘探, 2011, 46(增刊1): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2011S1010.htm

    Niu C, Liu C C, Liu Z B, et al. Applications of EEI inversion in reservoir prediction[J]. Oil Geophysical Prospecting, 2011, 46(S1): 67-71(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2011S1010.htm
    [10] 王香文, 刘红, 滕彬彬, 等. 地质统计学反演技术在薄储层预测中的应用[J]. 石油与天然气地质, 2012, 33(5): 730-735. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201205009.htm

    Wang X W, Liu H, Teng B B, et al. Application of geostatistical inversion to thin reservoir prediction[J]. Oil & Gas Geology, 2012, 33(5): 730-735(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201205009.htm
    [11] 闫建平, 言语, 李尊芝, 等. 砂砾岩储层物性演化及影响因素研究: 以东营凹陷北部陡坡带为例[J]. 岩性油气藏, 2016, 28(2): 1-6. doi: 10.3969/j.issn.1673-8926.2016.02.001

    Yan J P, Yan Y, Li Z Z, et al. Physical property evolution of glutenite reservoir and its influence factors: A case study from northern steep slope zone in Dongying Sag[J]. Lithologic Reservoirs, 2016, 28(2): 1-6(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2016.02.001
    [12] 李芳, 邓勇, 郭伟, 等. 莺歌海盆地高温超压区"甜点"储层地球物理预测方法[J]. 地质科技情报, 2019, 38(3): 299-304. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903033.htm

    Li F, Deng Y, Guo W, et al. "Desert" reservoir prediction by geophysical method at high temperature and overpressure district of Yinggehai Basin[J]. Geological Science and Technology Information, 2019, 38(3): 299-304(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903033.htm
    [13] 刘晓晨, 陆永潮, 杜学斌, 等. 层序格架约束下的地质统计学反演在薄砂体预测中的应用[J]. 地质科技通报, 2020, 39(3): 99-109. doi: 10.19509/j.cnki.dzkq.2020.0311

    Liu X C, Lu Y C, Du X B, et al. Application of geostatistical inversion constrained by sequence framework in thin-bedded sandbody prediction[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 99-109(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0311
    [14] 邵林海, 王九拴, 张雷, 等. 叠前同时反演在低孔低渗型砂岩储层预测及含气性检测中的应用[J]. 地质科技情报, 2016, 35(3): 145-150. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603018.htm

    Shao L H, Wang J S, Zhang L, et al. Application of pre-stack simultaneous inversion in low porosity and permeability sandstone reservoirs predication and hydrocarbon detection[J]. Geological Science and Technology Information, 2016, 35(3): 145-150(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201603018.htm
    [15] 秦德海, 李德郁, 蔡纪琰, 等. 扩展弹性阻抗在低孔、低渗砂砾岩储层物性预测中的应用[J]. 地球物理学进展, 2018, 33(5): 2148-2152. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201805050.htm

    Qin D H, Li D Y, Cai J Y, et al. Application of extended elastic impedance for physical property prediction of low porosity and low permeability glutenite reservoirs[J]. Progress in Geophysics, 2018, 33(5): 2148-2152(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201805050.htm
    [16] 周家雄, 马光克, 隋波, 等. 储层参数岩石物理反演在"甜点"储层预测中应用研究: 以W17油田为例[J]. 地球物理学进展, 2019, 34(3): 1159-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201903038.htm

    Zhou J X, Ma G K, Sui B, et al. Application of reservoir parameters rock physics inversion in the prediction of "sweet spot": A case study in W17 Oilfield[J]. Progress in Geophysics, 2019, 34(3): 1159-1169(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201903038.htm
    [17] Hill R. Elastic properties of reinforced solids: Some theoretical principles[J]. Mech. Phys. Solids, 1963, 11(1): 357-372.
    [18] Raymer L L, Hunt E R, Gardner J S. An improved sonic transit time-to-porosity transform[C]//Anon. Trans. Soc. Prof. Well Log Analysts, 21st Annual Logging Symposium, 1980: 55-59.
    [19] Gassmann F. Uber die elastizitat poroser medien[J]. Vier. Natur. Gesellschaft, 1951, 96(1): 1-23.
  • 加载中
图(12)
计量
  • 文章访问数:  343
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-12
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回