留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渤中凹陷西南洼东营组烃源岩地球化学特征及环境指示意义

阳宏 刘成林 王飞龙 汤国民 李国雄 曾晓祥 吴育平

阳宏, 刘成林, 王飞龙, 汤国民, 李国雄, 曾晓祥, 吴育平. 渤中凹陷西南洼东营组烃源岩地球化学特征及环境指示意义[J]. 地质科技通报, 2023, 42(1): 339-349. doi: 10.19509/j.cnki.dzkq.2021.0077
引用本文: 阳宏, 刘成林, 王飞龙, 汤国民, 李国雄, 曾晓祥, 吴育平. 渤中凹陷西南洼东营组烃源岩地球化学特征及环境指示意义[J]. 地质科技通报, 2023, 42(1): 339-349. doi: 10.19509/j.cnki.dzkq.2021.0077
Yang Hong, Liu Chenglin, Wang Feilong, Tang Guomin, Li Guoxiong, Zeng Xiaoxiang, Wu Yuping. Geochemical characteristics and environmental implications of source rocks of the Dongying Formation in southwest subsag of Bozhong Sag[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 339-349. doi: 10.19509/j.cnki.dzkq.2021.0077
Citation: Yang Hong, Liu Chenglin, Wang Feilong, Tang Guomin, Li Guoxiong, Zeng Xiaoxiang, Wu Yuping. Geochemical characteristics and environmental implications of source rocks of the Dongying Formation in southwest subsag of Bozhong Sag[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 339-349. doi: 10.19509/j.cnki.dzkq.2021.0077

渤中凹陷西南洼东营组烃源岩地球化学特征及环境指示意义

doi: 10.19509/j.cnki.dzkq.2021.0077
基金项目: 

国家自然科学基金项目 41872127

中海油天津分公司2020-2022年重大科研计划项目 CCL2020TJX0NST1266

详细信息
    作者简介:

    阳宏(1998-), 男, 现正攻读地质资源与地质工程专业硕士学位, 主要从事石油地质勘探、资源评价与油气地球化学研究工作。E-mail: 2305591359@qq.com

    通讯作者:

    刘成林(1970-), 男, 教授, 博士生导师, 主要从事油气资源评价与非常规油气地质方面研究工作。E-mail: liucl@cup.edu.cn

  • 中图分类号: TE121.3

Geochemical characteristics and environmental implications of source rocks of the Dongying Formation in southwest subsag of Bozhong Sag

  • 摘要:

    东营组烃源岩在渤中凹陷广泛分布, 明确该套烃源岩特征及其形成的古环境对于推动渤中凹陷常规-非常规油气勘探具有重要意义。通过对渤中凹陷西南洼东营组烃源岩样品进行有机、无机地球化学实验, 分析该套烃源岩品质、有机质来源和古沉积环境, 并与凹陷内主力烃源岩沙河街组进行对比分析。结果显示: ①东营组不同层段烃源岩特征差异显著, 且与沙一二段烃源岩呈现明显不同。东二下段与东三段有机质丰度高, 已达到成熟-高成熟阶段, 东营组整体有机质类型均以Ⅱ型为主; ②通过Pr/nC17-Ph/nC18等图版以及干酪根类型判断东营组有机质来源为混合型, 与沙一二段的低等藻类输入明显不同; ③综合Sr/Cu、Mn/Fe等16种元素含量或比值以及Pr/Ph、伽马蜡烷指数分析烃源岩形成时期的古环境, 与沙一二段烃源岩干旱气候下强还原咸化湖盆的形成环境所不同, 东营组整体形成于温湿气候下, 伴随较强陆源输入, 受控于弱氧化淡水环境; 纵向上, 从东三段-东一段古气候变化不大, 水体盐度基本一致, 但水深逐渐变浅, 水体氧化条件呈现逐渐增强的趋势; ④利用Co、La含量定量恢复东营组沉积时的古水深, 认为东三段(50.4m)>东二段(35.7m)≈沙一二段(33.2m)≈东一段(31.7m), 计算结果与前面的古水深定性结果保持一致。东营组独特成源条件的揭示, 将大大促进针对该组为烃源灶的油气勘探。

     

  • 图 1  研究区构造位置图

    Figure 1.  Structural location of the study area

    图 2  渤中凹陷西南洼东营组烃源岩有机碳含量与岩石热解生烃潜量相关图

    Figure 2.  Relationship diagram between (S1+S2) and TOC in the source rocks of the Dongying Formation in southwest subsag of Bozhong Sag

    图 3  渤中凹陷西南洼东营组烃源岩有机质丰度指标频率分布图

    Figure 3.  Frequency distribution of organic matter abundance of the source rocks from the Dongying Formation in southwest subsag of Bozhong Sag

    图 4  渤中凹陷西南洼东营组烃源岩有机质类型划分图

    Figure 4.  Classification of kerogen pyrolysis organic matter types in source rocks of Dongying Formation in southwest subsag of Bozhong Sag

    图 5  渤中凹陷西南洼东营组烃源岩Pr/nC17-Ph/nC18交会图(a)和C27-C28-C29规则甾烷分布三角图(b)

    Figure 5.  Crossplot of Pr/nC17vs Ph/nC18(a) and triangle of regular sterane distribution of C27-C28-C29(b) in source rocks of the Dongying Formation in the southwest subsag of the Bozhong Sag

    图 6  渤中凹陷西南洼东营组各层段镜质体反射率Ro(a)及甾烷成熟度参数图(b)

    Figure 6.  Ro (a) and sterane maturity parameters (b) of the source rocks from the Dongying Formation in southwest subsag of Bozhong Sag

    图 7  渤中西南洼东营组各层段烃源岩古环境元素比值交会图

    Figure 7.  Ratio of palaeo-environmental parameters of the source rocks from the Dongying Formation in southwest subsag of Bozhong Sag

    图 8  渤中凹陷西南洼东营组烃源岩古环境参数纵向分布

    注:样品主要取自CFD17、CFD18、CFD23、BZ13、BZ19等构造上的8口井

    Figure 8.  Longitudinal distribution of palaeo-environmental parameters of the source rocks from the Dongying Formation in southwest subsag of Bozhong Sag

    表  1  渤中凹陷西南洼东营组烃源岩有机质丰度评价

    Table  1.   Organic matter abundance of the source rocks from the Dongying Formation in the southwest subsag of the Bozhong Sag

    层段 w(TOC)/% “A”/% HC/10-6 (S1+S2)/(mg·g-1) 评价
    东一段(E3d1) $\frac{\text { 范围}}{\text { 平均值}}$ $\frac{0.1 \sim 0.83}{0.33}$ $\frac{0.01 \sim 0.14}{0.07}$ $\frac{78 \sim 856.6}{413.8}$ $\frac{0.24 \sim 2.37}{0.98}$
    东二上段(E3d2U) $\frac{0.13 \sim 1.18}{0.5}$ $\frac{0.01 \sim 0.47}{0.134}$ $\frac{48.58 \sim 2681.42}{734.22}$ $\frac{0.14 \sim 3.79}{1.42}$ 差-中等
    东二下段(E3d2L) $\frac{0.2 \sim 2.1}{0.78}$ $\frac{0.025 \sim 0.59}{0.15}$ $\frac{104.8 \sim 3966.6}{826.6}$ $\frac{0.26 \sim 11.46}{2.67}$ 中等-好
    东三段(E3d3) $\frac{0.6 \sim 6.15}{2.37}$ $\frac{0.05 \sim 1.06}{0.39}$ $\frac{316.8 \sim 6857.66}{2 \ 560.5}$ $\frac{1.03 \sim 45.08}{9.79}$ 好-优质
    沙一二段(E3s1-2) $\frac{1.28 \sim 6.9}{2.9}$ $\frac{0.02 \sim 1.43}{0.44}$ $\frac{331 \sim 6943.1}{2354.5}$ $\frac{1.47 \sim 59.8}{21.14}$ 好-优质
    下载: 导出CSV

    表  2  渤中凹陷西南洼东营组烃源岩有机质类型划分

    Table  2.   Classification of kerogen pyrolysis organic matter types of the source rocks from the Dongying Formation in southwest subsag of Bozhong Sag

    层段 氢指数 H/C原子比 O/C原子比 KTI指数 干酪根类型
    东一段(E3d1) $\frac{\text { 范围}}{\text { 平均值}}$ $\frac{30 \sim 382.1}{207.7}$ $\frac{0.85 \sim 1.09}{0.95}$ $\frac{0.13 \sim 0.25}{0.18}$ $\frac{35 \sim 54}{42.2}$ 1-Ⅱ2
    东二上段(E3d2U) $\frac{34.1 \sim 419}{211.6}$ $\frac{0.7 \sim 1.39}{1.02}$ $\frac{0.1 \sim 0.75}{0.21}$ $\frac{20 \sim 72.9}{40.3}$ 1-Ⅱ2
    东二下段(E3d2L) $\frac{55.6 \sim 581.8}{242.1}$ $\frac{0.67 \sim 1.47}{1.02}$ $\frac{0.1 \sim 0.75}{0.21}$ $\frac{15 \sim 80}{42.8}$ 1-Ⅱ2
    东三段(E3d3) $\frac{22.5 \sim 774.5}{344.18}$ $\frac{0.38 \sim 1.46}{0.97}$ $\frac{0.08 \sim 0.49}{0.16}$ $\frac{22 \sim 85.7}{45.9}$ 1-Ⅱ2为主,少量Ⅰ型
    沙一二段(E3s1-2) $\frac{90 \sim 1 325}{572}$ $\frac{1.31 \sim 1.89}{1.28}$ $\frac{0.1 \sim 0.2}{0.18}$ $\frac{44 \sim 86}{63}$ Ⅰ-Ⅱ1
    下载: 导出CSV

    表  3  渤中凹陷西南洼东营组烃源岩有机质类型划分

    Table  3.   Classification of kerogen pyrolysis organic matter types in the source rocks of the Dongying Formation in southwest subsag of Bozhong Sag

    层段 Ro/% Tmax/℃ C29 20S/(20S+20R)甾烷 C29ββ/(ββ + αα) 甾烷 成熟度
    东一段(E3d1) $\frac{\text { 范围}}{\text { 平均值}}$ $\frac{0.3~0.63}{ 0.5}$ $\frac{304~437}{ 404}$ $\frac{0.15~0.26}{ 0.22}$ $\frac{0.18~0.28}{ 0.24}$ 未熟-低熟阶段
    东二上段(E3d2U) $\frac{0.42~0.84}{ 0.59}$ $\frac{387~445}{ 428}$ $\frac{0.11~0.36}{ 0.31}$ $\frac{0.27~0.39}{ 0.33}$ 低熟-成熟阶段
    东二下段(E3d2L) $\frac{0.49~1.2}{ 0.7}$ $\frac{387~445}{ 437}$ $\frac{0.17~0.48}{ 0.36}$ $\frac{0.23~0.53}{ 0.38}$ 成熟阶段
    东三段(E3d3) $\frac{0.53~1.48}{ 1.0}$ $\frac{407~449}{ 440}$ $\frac{0.17~0.56}{ 0.42}$ $\frac{0.25~0.7}{ 0.49}$ 成熟-高成熟阶段
    沙一二段(E3s1-2) $\frac{0.61~1.67}{ 1.1}$ $\frac{423~450}{ 445}$ 成熟-高成熟阶段
    下载: 导出CSV

    表  4  渤中凹陷西南洼东营组烃源岩古水深计算

    Table  4.   Paleo water depth of the Dongying Formation in southwest subsag of Bozhong Sag

    层段 井名 w(Co)/10-6 w(La)/10-6 水深h/m 单井平均水深h/m 层段平均水深H/m
    E3d1 BZ13-A 11.7~21.8 22.2~48.4 23.4~35.1 38.3 31.7
    BZ13-B 14.5~16.4 39.2~45.9 21.4~26.0 23.4
    BZ19-B 15.7~17.5 32.2~42.9 20.7~38.8 31.6
    E3d2U CFD17-A 9.88~13.2 30.7~48.4 12.15~25.12 26.9 34.2
    BZ19-A 14.4~16.3 33.9~36.8 27.8~36.9 31.7
    BZ19-B 10.5~15.8 31~37.8 25~32.6 34.6
    E3d2L CFD17-A 11.2~15.9 34.5~46.4 16.1~41.8 32.6 37.3
    CFD18-A 11.6~14.4 41.2~47.4 14.7~32.0 26.9
    BZ13-C 14.7~24.6 36.5~53.1 28.2~67.1 41.4
    E3d3 CFD17-A 11.9~17.5 39.2~48.4 12.9~34.8 27.4 50.4
    BZ13-C 21.2~22.9 44.4~48.8 51.8~63.5 57.7
    BZ13-D 13.8~17.9 36.8~48.0 23.6~35.9 30.4
    BZ19-A 16.8~31.7 22.8~41.6 35.4~109.4 76.2
    BZ19-B 16.6~32.9 32.2~45.4 34.5~121.3 65.9
    E3s1-2 CFD23-A 13.1 20.8 29.8 29.8 33.2
    BZ19-A 6.35~16.7 36.3~51.5 11.23~39.63 36.67
    下载: 导出CSV
  • [1] 张功成. 渤海海域构造格局与富生烃凹陷分布[J]. 中国海上油气地质, 2000, 14(2): 93-99, 2. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200002003.htm

    Zhang G C. Tectonic framework and prolific hydrocarbon depressions in Bohai Bay[J]. China Offshore Oil and Gas, 2000, 14(2): 93-99, 2(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200002003.htm
    [2] 姜福杰, 庞雄奇. 环渤中凹陷油气资源潜力与分布定量评价[J]. 石油勘探与开发, 2011, 38(1): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201101005.htm

    Jiang F J, Pang X Q. Quantitative evaluation of hydrocarbon resource potential and its distribution in the Bozhong Sag and surrounding areas, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2011, 38(1): 23-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201101005.htm
    [3] 王昕, 王永利, 官大勇, 等. 环渤中凹陷斜坡区浅层油气地质特征与勘探潜力[J]. 中国海上油气, 2012, 24(3): 12-16. doi: 10.3969/j.issn.1673-1506.2012.03.003

    Wang X, Wang Y L, Guan D Y, et al. Shallow petroleum geology and exploration potential in the slope area, circum-Bozhong Sag[J]. China Offshore Oil and Gas, 2012, 24(3): 12-16(in Chinese with English abstract). doi: 10.3969/j.issn.1673-1506.2012.03.003
    [4] 王翔宇. 渤海湾盆地渤中凹陷渐新统东营组三段烃源岩预测及评价[D]. 武汉: 长江大学, 2019.

    Wang X Y. Prediction and evaluation of the source rocks of the third member of the Oligocene Dongying Formation in the Bozhong Sag, Bohai Bay Basin[D]. Wuhan: Yangtze University, 2019(in Chinese with English abstract).
    [5] 刘伟. 渤中凹陷湖相优质烃源岩形成机理与发育模式研究[D]. 武汉: 长江大学, 2020.

    Liu W. Study on the Formation mechanism and development model of lacustrine high quality source rocks in Bozhong sub-basin[D]. Wuhan: Yangtze University, 2020(in Chinese with English abstract).
    [6] 张参, 阳宏, 王飞龙, 等. 渤中凹陷南洼东营组烃源岩有机地球化学特征[J]. 海洋地质前沿, 2020, 36(11): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202011006.htm

    Zhang C, Yang H, Wang F L, et al. Organic geochemistry of the source rocks in the Dongying Formation of the South Bozhong subsag[J]. Marine Geology Frontiers, 2020, 36(11): 35-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202011006.htm
    [7] Patterson J H, Ramsden A R, Dale L S, et al. Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek, Queensland, Australia[J]. Chemical Geology, 1986, 55(1/2): 1-16.
    [8] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S. A[J]. Chemical Geology, 1992, 99(1/3): 65-82.
    [9] Rimmer S, Thompson J, Goodnight S, et al. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: Geochemical and petrographic evidence[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2004, 215(1/2): 125-154.
    [10] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318.
    [11] 邓宏文, 钱凯. 沉积地球化学与环境分析[M]. 兰州: 甘肃科学技术出版社, 1993.

    Deng H W, Qian K. Sedimentary geochemistry and environment analysis[M]. Lanzhou: Gansu Science and Technology Press, 1993: 95-104(in Chinese).
    [12] 李浩, 吴金涛, 黄建廷, 等. 断层垂向封闭性定量分析及其在渤海湾盆地A油田中的应用[J]. 地质科技通报, 2020, 39(4): 125-131. doi: 10.19509/j.cnki.dzkq.2020.0416

    Li H, Wu J T, Huang J T, et al. Quantitative analysis of fault vertical sealing ability and its application in A Oilfield of Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 125-131(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0416
    [13] 林旭, 赵希涛, 吴中海, 等. 渤海湾周缘主要河流钾长石物源示踪指标研究[J]. 地质科技通报, 2020, 39(6): 10-18. doi: 10.19509/j.cnki.dzkq.2020.0602

    Lin X, Zhao X T, Wu Z H, et al. Source tracing elements of K-feldspars of main rivers around Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 10-18(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0602
    [14] 王华, 陈思, 巩天浩, 等. 牵引流化重力流沉积过程与堆积机制: 以渤海湾盆地歧口凹陷为例[J]. 地质科技通报, 2020, 39(1): 95-104. doi: 10.19509/j.cnki.dzkq.2020.0111

    Wang H, Chen S, Gong T H, et al. Sedimentary process and accumulation mechanism of traction fluidzation gravity flow: An example from Qikou Sag, Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 95-104(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0111
    [15] 杜雨佳. 渤中凹陷古近系烃源岩生烃潜力评价[D]. 山东青岛: 中国石油大学(华东), 2015.

    Du Y J. Hydrocarbon generation potential of Paleogene source rocks in Bozhong Depression[D]. Qingdao, Shandong: China University of Petroleum(East China), 2015(in Chinese with English abstract).
    [16] 牛成民, 王飞龙, 何将启, 等. 渤海海域渤中19-6潜山气藏成藏要素匹配及成藏模式[J]. 石油实验地质, 2021, 43(2): 259-267. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202102009.htm

    Niu C M, Wang F L, He J Q, et al. Accumulation factor matching and model of Bozhong 19-6buried hill gas reservoir, Bohai Sea area[J]. Prtroleum Geology & Experiment, 2021, 43(2): 259-267(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202102009.htm
    [17] 施和生, 王清斌, 王军, 等. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探, 2019, 24(1): 36-45. doi: 10.3969/j.issn.1672-7703.2019.01.005

    Shi H S, Wang Q B, Wang J, et al. Discovery and exploration significance of large condensate gas fields in BZ19-6 structure in deep Bozhong Sag[J]. China Petroleum Exploration, 2019, 24(1): 36-45(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.01.005
    [18] 何仕斌, 朱伟林, 李丽霞. 渤中坳陷沉积演化和上第三系储盖组合分析[J]. 石油学报, 2001, 22(2): 38-43, 121-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200102007.htm

    He S B, Zhu W L, Li L X. Sedimentary evolution and Neogene reservoir-seal assemblage analysis of Bozhong Depression[J]. Acta Petrolei Sinica, 2001, 22(2): 38-43, 121-122(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200102007.htm
    [19] Fang H, Zhou X, Zhu Y, et al. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China[J]. Organic Geochemistry, 2011, 42(4): 323-339.
    [20] 黄志龙, 高岗. 石油地质综合研究方法[M]. 北京: 石油工业出版社, 2017.

    Huang Z L, Gao G. Comprehensive research method of petroleum geology[M]. Beijing: Petroleum Industry Press, 2017(in Chinese).
    [21] 李福来, 曲希玉, 刘立, 等. 内蒙古东北部上二叠统林西组沉积环境[J]. 沉积学报, 2009, 27(2): 265-272. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200902009.htm

    Li F L, Qu X Y, Liu L, et al. Sedimentary enviorment on upper Permain Linxi Group in Inner Mongolia[J]. Acta Sedimentologica Sinica, 2009, 27(2): 265-272(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200902009.htm
    [22] Sarwar A R, Liu C, Gong H, et al. Paleo-sedimentary environment in relation to enrichment of organic matter of Early Cambrian black rocks of Niutitang Formation from Xiangxi area China[J]. Marine and Petroleum Geology, 2019, 112: 104057.
    [23] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299: 715-717.
    [24] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
    [25] 魏永峰, 赵志强, 林美英, 等. 西昆仑尖山混杂岩带中硅质岩地球化学特征及沉积环境[J]. 新疆地质, 2016, 34(2): 197-203. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201602009.htm

    Wei Y F, Zhao Z Q, Lin M Y, et al. Geochemical characteristics and sedimentary environment of cherts from Jianshan melange belt in West Kunlun[J]. Xinjiang Geology, 2016, 34(2): 197-203(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201602009.htm
    [26] 郑玉龙, 马志强, 王佰长, 等. 黑龙江省柳树河盆地始新统八虎力组油页岩元素地球化学特征及沉积环境[J]. 古地理学报, 2015, 17(5): 689-698. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201505011.htm

    Zheng Y L, Ma Z Q, Wang B Z, et al. Geochemistry characteristics and sedimentary environment of oil shale from the Eocene Bahuli Formation in Liushuhe Basin, Heilongjiang Province[J]. Journal of Palaeogeography, 2015, 17(5): 689-698(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201505011.htm
    [27] 周洪瑞, 王自强, 崔新省, 等. 华北地台南部中新元古界层序地层研究[M]. 北京: 地质出版社, 1999.

    Zhou H R, Wang Z Q, Cui X S. et al. Study on stratigraphic characteristics of Mesoproterozoic in southern North China Platform[M]. Beijing: Geological Publishing House, 1999(in Chinese).
    [28] 吴智平, 周瑶琪. 一种计算沉积速率的新方法: 宇宙尘埃特征元素法[J]. 沉积学报, 2000, 18(3): 395-399. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200003011.htm

    Wu Z P, Zhou Y Q. Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate[J]. Acta Sedimentologica Sinca, 2000, 18(3) : 395-399(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200003011.htm
    [29] 王峰, 刘玄春, 邓秀芹, 等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报, 2017, 35(6): 1265-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201706017.htm

    Wang F, Liu X C, Deng X Q, et al. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinca, 2017, 35(6): 1265-1273(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201706017.htm
    [30] 范萌萌, 卜军, 赵筱艳, 等. 鄂尔多斯盆地东南部延长组微量元素地球化学特征及环境指示意义[J]. 西北大学学报: 自然科学版, 2019, 49(4): 633-642. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201904016.htm

    Fan M M, Bu J, Zhao X Y, et al. Geochemical characteristics and environmental implications of trace elements of Yanchang Formation in southeastern Ordos Basin[J]. Journal of Northwest University: Natural Science Edition, 2019, 49(4): 633-642(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201904016.htm
    [31] 朱伟林, 米立军, 龚再升, 等. 渤海海域油气成藏与勘探[M]. 北京: 科学出版社, 2009.

    Zhu W L, Mi L J, Gong Z S, et al. Hydrocarbon accumulation and exploration in Bohai Sea[M]. Beijing: Science Press, 2009(in Chinese).
    [32] 黄梓桑, 王兴志, 杨西燕, 等. 沉积环境对页岩中有机质富集的约束: 以蜀南地区五峰组-龙马溪组为例[J]. 沉积学报, 2021, 39(3): 631-644. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202103010.htm

    Huang Z S, Wang X Z, Yang X Y, et al. Constraints of sedimentary environment on organic matter accumulation in shale: A case study of the Wufeng-Longmaxi Formations in the southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(3): 631-644(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202103010.htm
    [33] 李成凤, 肖继风. 用微量元素研究胜利油田东营盆地沙河街组的古盐度[J]. 沉积学报, 1988, 6(4): 100-107. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198804010.htm

    Li C F, Xiao J F. The application of trace element to the study on paleosalinities in Shahejie Formation of Dongying Basin Shengli Oilfield[J]. Acta Sedimentologica Sinca, 1998, 6(4): 100-107(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198804010.htm
    [34] 钱焕菊, 陆现彩, 张雪芬, 等. 东营凹陷沙四段上部泥质烃源岩元素地球化学及其古盐度的空间差异性[J]. 岩石矿物学杂志, 2009, 28(2): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200902008.htm

    Qian H J, Lu X C, Zhang X F, et al. Spatial paleosalinity distribution and element geochemistry of argillceous source rocks in the upper part of 4th Member of Tertiary Shehejie Formation in Dongying Sag[J]. Acta Petrologic et Mineralogica, 2009, 28(2): 161-168(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200902008.htm
    [35] Piper D Z. Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks[J]. Chemical Geology, 1994, 114(1/2): 95-114.
    [36] Emerson S R, Huested S S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater[J]. Marine Chemistry, 1991, 34(3/4): 177-196.
    [37] Bryn J, David M. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129.
    [38] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
    [39] 李广之, 胡斌, 邓天龙, 等. 微量元素V和Ni的油气地质意义[J]. 天然气地球科学, 2008, 19(1): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200801007.htm

    Li G Z, Hu B, Deng T L, et al. Petroleum geological significance of microelements V and Ni[J]. Natural Gas Geoscience, 2008, 19(1): 13-17(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200801007.htm
    [40] Peters K E, Walters C C, Moldowan J M. The biomarker guide[M]. Beijing: Petroleum Industry Press, 2013.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  591
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04

目录

    /

    返回文章
    返回