留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄铜矿微量元素对矿床成因类型的指示

王启林 张金阳 严德天 闵红 刘曙 李晨

王启林, 张金阳, 严德天, 闵红, 刘曙, 李晨. 黄铜矿微量元素对矿床成因类型的指示[J]. 地质科技通报, 2023, 42(1): 126-143. doi: 10.19509/j.cnki.dzkq.2021.0090
引用本文: 王启林, 张金阳, 严德天, 闵红, 刘曙, 李晨. 黄铜矿微量元素对矿床成因类型的指示[J]. 地质科技通报, 2023, 42(1): 126-143. doi: 10.19509/j.cnki.dzkq.2021.0090
Wang Qilin, Zhang Jinyang, Yan Detian, Min Hong, Liu Shu, Li Chen. Genesis type of ore deposits indicated by trace elements of chalcopyrite[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 126-143. doi: 10.19509/j.cnki.dzkq.2021.0090
Citation: Wang Qilin, Zhang Jinyang, Yan Detian, Min Hong, Liu Shu, Li Chen. Genesis type of ore deposits indicated by trace elements of chalcopyrite[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 126-143. doi: 10.19509/j.cnki.dzkq.2021.0090

黄铜矿微量元素对矿床成因类型的指示

doi: 10.19509/j.cnki.dzkq.2021.0090
基金项目: 

国家重点研发计划 2018YFF0215402

国家自然科学基金面上项目 41572048

详细信息
    作者简介:

    王启林(1995—  ),男,现正攻读矿产普查与勘探专业博士学位,主要从事成因矿物学的研究工作。E-mail:wangqilin@cug.edu.cn

    通讯作者:

    张金阳(1977—  ),男,教授,博士生导师,主要从事岩浆岩石学与矿床学研究工作。E-mail:zhangjinyang@cug.edu.cn

  • 中图分类号: P618.4

Genesis type of ore deposits indicated by trace elements of chalcopyrite

  • 摘要:

    金属矿物微量元素对矿床形成过程和成因类型具有重要指示作用,目前对黄铁矿、磁铁矿及闪锌矿研究较多,黄铜矿微量元素特征鲜有报道。根据收集的斑岩型铜矿床(PCD)、岩浆型铜镍硫化物矿床(MSD)、沉积岩型层状铜矿床(SSC)、铁氧化物铜金矿床(IOCG)、喷流沉积型矿床(SEDEX)及火山成因块状硫化物矿床(VMS)铜精矿样品,结合资料,对黄铜矿开展了详细矿相学和LA-ICP-MS微量元素研究,揭示黄铜矿微量元素特征及其与矿床成因类型的关系。黄铜矿中Mn,Co,Ni,Se,Ag,Sn,Pb及Bi质量分数可达1 000×10-6以上,Ga,Ge,Mo,Cd,In,Sb,Te,Au及Tl质量分数可达100×10-6以上,说明黄铜矿是很多微量元素的重要载体。黄铜矿Sb-Tl,In-Sn,Pb-Bi及Mn-Ni呈明显的正相关关系,其中Sb,Tl,In及Sn主要以固溶体的形式赋存于黄铜矿,Pb与Bi以方铅矿包裹体的形式赋存于黄铜矿,Mn,Co,As,Te,Ag及Ni 2种赋存状态均有发育。PCD型和VMS型黄铜矿微量元素变化大,MSD型黄铜矿中Ni质量分数高,In质量分数较低,SSC型黄铜矿Ge质量分数高,Sn质量分数较低。Se在MSD型和VMS型黄铜矿中质量分数较高,在SEDEX型和SSC型黄铜矿中质量分数较低。Ni,In,Sn元素差异主要与不同类型岩浆作用有关,Se元素质量分数差异主要受温度控制,SSC型黄铜矿Ge元素质量分数高可能与成矿温度和赋矿围岩有关。因此,基于上述微量元素特征,Ni-Co和Ni-In图解可区分MSD型和其他类型,Ni-Se图解可区分SEDEX型,SSC型及VMS型,Ge-Sn图解可进一步区分SSC型和SEDEX型,Co/Ni-Ag/Bi图解可区分MSD型和PCD型,Zn-Sn/In在一定程度上可区分IOCG型和其他类型。这些首次系统地提出的图解将为判别矿床成因类型提供新的参考。

     

  • 图 1  铜精矿产地分布图

    Figure 1.  Distribution map of copper concentrate origin

    图 2  铜精矿样品及典型矿相结构照片

    a.样品信息牌;b.MSD中镍黄铁矿、磁黄铁矿和黄铜矿共生;c.IOCG中黄铜矿与磁黄铁矿接触边界平直,大致共生;d, e.IOCG中磁铁矿被斑铜矿半包裹;e.SEDEX中磁黄铁矿和磁铁矿被黄铜矿半包裹;f.磁铁矿与黄铜矿接触边界平直,大致共生;g~h.PCD中辉钼矿和斑铜矿多呈单体;i.与粗粒黄铜矿共生的闪锌矿出溶黄铜矿;j.VMS中黄铜矿包裹黄铁矿,又被闪锌矿尖角交代;k.黄铜矿的同心环带结构,环带之间被闪锌矿充填;l.SSC中大量斑铜矿出现。Bor.斑铜矿;Ccp.黄铜矿;Mag.磁铁矿;Mol.辉钼矿;Pn.镍黄铁矿;Po.磁黄铁矿;Py.黄铁矿;Sp.闪锌矿。括号内为样品号

    Figure 2.  Photos of copper concentrate samples and typical mineragraphy

    图 3  黄铜矿微量元素箱形图

    Figure 3.  Box diagram of trace elements in chalcopyrite

    图 4  不同类型矿床黄铜矿微量元素箱形图(数据来源见表 3)

    Figure 4.  Box diagrams of trace elements in chalcopyrite from different types of deposits

    图 5  黄铜矿微量散点图

    a~d.Sb-Tl、Pb-Bi、In-Sn和Ni-Mn在VMS、PCD、IOCG等矿床中均呈正相关;e~h.Au-Te、Sb-As、Zn-In、Zn-Mn等主要在VMS和PCD中呈正相关;i.Co-As并没有明显的相关性

    Figure 5.  Scatter diagrams of trace elements in chalcopyrite

    图 6  黄铜矿典型LA-ICP-MS剥蚀信号剖面图(括号内为质量分数,10-6)

    Figure 6.  Representative single-spot LA-ICP-MS spectra for selected elements in chalcopyrite(number in bracket is concentration)

    图 7  黄铜矿微量元素判别图解

    Figure 7.  Discrimination diagrams of trace elements in chalcopyrite

    表  1  铜精矿产地及矿床成因信息

    Table  1.   Origin and genesis of samples of copper concentrate

    类型 国家 编号 矿床(区) 资料来源
    IOCG 澳大利亚 Cu-18 Mim 文献[27]
    澳大利亚 Cu-19 Eloise
    巴西 Cu-26 Antas North 文献[28]
    巴西 Cu-27 Sossego
    巴西 Cu-68-1 Salobo
    秘鲁 Cu-05 Condestable 文献[29]
    MSD 澳大利亚 Cu-66-1 Nova 文献[30]
    中国 X11-2 Xiarihamu 文献[31]
    PCD 智利 Cu-13 Escondida 文献[32]
    智利 Cu-14 Los Pelambres 文献[33]
    印度尼西亚 Cu-30 Grasberg 文献[34]
    墨西哥 Cu-23 Cananea 文献[35]
    墨西哥 Cu-42 Buenavista
    秘鲁 Cu-06 Antamina 文献[36]
    秘鲁 Cu-07 Las Bambas 文献[37]
    秘鲁 Cu-09 Toromocho 文献[38]
    秘鲁 Cu-10 Cerro Verde 文献[39]
    老挝 Cu-28 Phu Kham 文献[40]
    美国 Cu-24 Sierrita 文献[41]
    SEDEX 澳大利亚 Cu-50-1 Kanmantoo 文献[42]
    SSC 中国 TD-2 Tangdan 文献[43-44]
    刚果 Cu-51-3 Kinsenda 文献[45]
    VMS 澳大利亚 Cu-21 Tritton 文献[46]
    澳大利亚 Cu-22 Cobar 文献[47]
    厄立特里亚 Cu-29 Bisha 文献[48]
    西班牙 Cu-43 Aguas Tenidas 文献[49]
    未知 刚果 Cu-100-1 Kapuio 未知
    巴西 Cu-93-1 Para 未知
    下载: 导出CSV

    表  2  黄铜矿LA-ICP-MS微量元素组成

    Table  2.   Trace element concentrations in chalcopyrite determined by LA-ICP-MS  wB/10-6

    样品 Cu-18 Cu-19 Cu-26 Cu-27
    编号 1 2 3 4 1 2 3 4 5 1 2 3 4 5 1
    Ti 1.54 2.02 0.41 1.52 12.9 4.42 1.96 BDL 3.36 0.36 BDL 3.51 0.46 2.46 2.06
    Cr 28.6 166 51.7 104 14.2 15.9 4.3 1.3 47.1 2.1 52.9 87.0 16.4 35.2 BDL
    Mn 0.85 0.05 BDL 0.32 4.84 2.74 2.90 1.30 1.75 1.31 0.98 38.8 BDL 4.54 BDL
    Co 4.42 0.84 1.86 3.94 2.27 8.76 1.67 3.09 7.09 1.47 2.82 8.52 0.32 5.20 0.14
    Ni 0.15 0.01 0.36 0.10 22.0 18.0 43.1 58.5 44.2 44.6 0.64 85.4 0.47 111 35.9
    Zn 79.3 30.6 169 1818 868 525 1 269 653 392 715 923 1295 418 843 179
    Ga 0.09 0.02 0.29 0.19 1.20 0.12 0.25 0.21 0.24 0.48 0.14 0.31 0.05 0.11 0.32
    Ge 1.83 1.15 1.44 0.64 0.32 0.68 1.32 0.92 BDL 0.94 0.73 0.38 0.72 0.59 1.10
    As 24.7 BDL 7.24 BDL 1.24 11.2 11.9 BDL 18.7 1.24 BDL 3.55 BDL 2.94 1.35
    Se 164 41.6 44.8 6.72 16.1 17.1 15.9 16.0 14.0 37.8 48.5 67.3 40.3 68.1 23.9
    Mo BDL BDL 0.36 0.30 BDL 0.80 BDL BDL BDL BDL BDL BDL 0.05 BDL 0.11
    Ag 2.14 0.08 0.09 42.7 92.0 151 10.4 6.53 160 7.48 100 42.6 23.5 16.8 11.9
    Cd BDL 0.44 0.70 2.33 3.58 3.05 2.01 2.42 3.64 2.60 4.49 6.18 0.58 3.92 BDL
    In 5.07 176.1 5.12 14.4 33.0 16.6 33.9 19.3 10.4 3.85 2.79 4.62 1.03 5.04 6.91
    Sn 113 0.22 56.9 7.93 44.9 22.8 24.1 18.1 15.5 28.3 1.51 25.0 0.25 5.80 10.6
    Sb 0.62 0.59 0.90 2.49 2.45 4.77 0.40 0.42 2.27 0.06 0.52 BDL 0.39 BDL 0.27
    Te 2.17 0.57 9.85 0.19 2.36 0.99 0.77 1.32 1.25 1.96 1.53 0.98 1.14 2.71 0.58
    Au BDL BDL 0.07 BDL 2.16 0.76 0.01 0.03 0.39 0.01 BDL BDL BDL 0.04 0.02
    Tl BDL 0.07 0.13 0.21 0.13 0.19 0.02 0.02 0.56 0.06 0.13 0.04 0.03 BDL 0.02
    Pb 2.50 0.10 3.57 15.5 41.0 25.4 2.47 14.3 25.9 3.48 20.0 70.2 2.99 11.1 3.42
    Bi 1.06 2.42 13.2 4.08 16.8 18.6 1.15 0.92 27.9 0.13 0.48 0.90 0.19 0.27 0.39
    样品 Cu-27 Cu-68-1 Cu-05 Cu-66-1
    编号 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3
    Ti 2.18 1.72 157 2.87 1.85 0.79 3.13 1.48 0.75 0.01 0.79 1 756 17.5 0.20 2.24
    Cr 32.5 25.1 143 6.6 1 108 411 456 962 46.5 80.2 35.9 182 3 368 93.5 1 634
    Mn 0.67 BDL 13.3 0.85 6.30 11.1 3.70 7.13 .90 6.00 39.2 143 28.4 14.9 6.11
    Co 0.09 0.16 2.43 0.01 21.1 1.39 0.52 10.6 0.60 0.45 3.33 1.41 20.6 0.64 4.36
    Ni 0.37 0.31 15.2 0.01 2.22 2.05 0.59 11.1 0.92 0.50 0.23 1.91 742 318 176
    Zn 87.6 65.5 25.9 187 673 1 730 1 371 1 069 1 201 123 1 654 617 389 531 406
    Ga 0.03 BDL 0.60 0.03 24.3 22.1 20.8 0.08 1.43 BDL 1.22 5.87 0.42 0.23 0.23
    Ge 0.90 0.66 1.39 0.64 26.2 2.53 2.57 1.49 BDL 1.42 1.88 3.21 3.15 2.47 2.58
    As 1.14 0.38 3.78 BDL 22.6 39.5 BDL 16.6 56.3 80.2 10.1 93.9 4.81 2.65 4.36
    Se 33.5 25.6 32.7 24.8 26.7 35.2 42.4 5.76 10.5 6.35 12.2 22.6 38.2 42.4 44.4
    Mo 0.27 BDL 5.83 BDL 2.48 3.98 0.57 6.47 0.32 0.20 BDL 1.60 2.32 0.11 3.58
    Ag 0.23 0.18 4.19 31.4 4.39 44.3 82.6 129 442 14.9 1.98 9.62 26.7 17.7 47.0
    Cd 0.61 0.95 BDL 0.09 1.27 7.19 4.93 3.94 9.18 0.95 9.84 6.35 30.5 18.3 14.1
    In 1.84 4.96 2.27 2.19 13.2 39.2 42.2 0.17 697.4 2.92 90.6 36.4 1.31 0.91 0.79
    Sn 0.15 0.71 0.04 BDL 221 155 171 3.58 1025 0.66 81.6 412 3.36 5.66 2.97
    Sb 0.42 0.01 0.42 0.32 14.9 6.04 1.25 8.98 8.20 6.06 3.68 13.3 6.04 2.30 10.6
    Te 0.15 0.13 0.83 0.73 0.34 1.31 0.23 0.25 1.65 1.23 2.17 1.41 7.51 8.94 4.28
    Au 0.06 BDL 0.31 0.04 0.16 0.07 0.08 0.13 0.07 0.07 0.13 0.15 0.16 BDL BDL
    Tl 0.01 BDL 0.02 0.01 BDL 0.10 0.04 0.11 0.04 0.06 0.34 0.23 0.11 BDL BDL
    Pb 2.07 1.97 10.5 2.62 23.9 472 5.57 330 145 101 44.6 190 15.3 4.18 28.8
    Bi 0.24 0.38 0.81 1.73 1.59 42.9 1.38 20.6 24.1 20.8 1.43 41.4 2.22 0.44 2.34
    样品 Cu-66-1 X11-2 Cu-13 Cu-14 Cu-30
    编号 4 5 1 2 3 4 1 2 3 4 5 6 7 1 2
    Ti 2.70 1.32 BDL BDL 0.65 0.64 2.07 100 62.8 44.5 47.4 28.6 35.1 213 8.42
    Cr 2 107 1 145 34.8 25.9 37.2 2.0 72.1 4.7 58.5 213 654 197 77.5 32.0 367
    Mn 8.29 3.85 69.3 2.59 1537 3.11 4.88 2.65 15.4 6.58 5.35 12.5 6.36 236 34.6
    Co 2.86 4.33 15.9 0.06 32.8 0.01 3.00 0.92 1.08 7.29 1.82 8.89 1.18 18.0 37.8
    Ni 147 219 1 289 8.12 2 407 5.64 0.41 0.11 0.55 0.83 1.76 2.28 1.44 2.12 0.70
    Zn 334 233 852 455 1 139 358 1 365 347 2 849 29.6 13.4 118 21.5 292 91.6
    Ga 0.06 BDL 0.01 0.01 0.11 0.03 0.33 0.59 1.84 0.49 0.77 1.12 0.58 3.85 1.59
    Ge 3.08 1.61 3.15 2.65 1.69 3.48 2.56 1.42 4.23 2.46 3.17 0.12 2.83 4.04 3.83
    As 2.54 3.63 4.82 1.53 27.4 1.53 59.3 25.1 BDL 83.0 49.6 37.7 280 24.4 BDL
    Se 36.6 39.5 30.8 53.1 33.5 20.5 115 62.3 165 65.0 190 200 142 296 163
    Mo 3.60 1.22 0.30 0.06 0.27 0.03 1.05 0.82 1.04 25.0 85.7 40.3 14.2 4.01 3.59
    Ag 19.4 20.6 4.32 1.05 1.81 0.48 12.3 4.62 30.5 20.8 17.4 112 7.44 49.8 24.1
    Cd 13.1 13.6 4.88 2.72 6.90 4.02 6.07 1.17 1.36 1.67 BDL 3.40 1.32 5.71 0.68
    In 0.61 0.01 1.55 1.32 1.41 0.32 2.56 9.88 4.71 3.35 2.81 2.79 6.23 13.7 2.45
    Sn 2.94 0.54 0.37 0.55 BDL 0.24 1.67 1.09 5.44 22.5 BDL 29.1 1.03 31.0 35.7
    Sb 7.58 3.08 0.42 1.50 1.46 0.35 2.94 0.84 1.86 3.50 1.32 5.39 3.78 1.18 2.35
    Te 0.92 2.63 0.79 0.52 0.38 0.24 1.59 0.88 2.07 0.81 4.21 0.37 0.83 10.1 2.17
    Au 0.05 BDL 0.06 0.04 BDL 0.02 BDL 0.04 0.04 0.03 BDL 0.27 0.01 0.94 0.18
    Tl 0.01 BDL 0.07 BDL 0.05 0.03 0.03 0.09 0.04 0.07 0.09 0.09 0.05 0.57 0.07
    Pb 18.0 16.6 27.5 29.3 33.3 11.8 213 39.1 255 32.2 49.1 98.7 117 619 303
    Bi 1.31 2.71 0.35 0.65 1.30 0.42 3.07 1.11 8.80 6.28 38.9 5.65 6.88 55.1 3.34
    样品 Cu-30 Cu-23 Cu-42 Cu-06
    编号 3 4 5 6 1 2 3 4 1 2 3 4 5 1 2
    Ti 21.5 107 158 29.2 8.21 470 11.2 75.3 0.91 25.8 1.00 0.14 BDL 2.86 3.80
    Cr 49.9 828 28.3 524 71.4 1 345 317 430 98.3 291 41.1 1.6 0.5 1.8 54.2
    Mn 17.2 48.0 296 111 2.29 107 4.24 13.7 34.7 34.3 21.5 2.69 1.64 6.98 129
    Co 29.7 47.5 16.2 27.3 0.53 1.10 1.12 6.27 4.47 3.63 0.84 0.04 0.07 21.4 94.7
    Ni 0.42 2.20 4.05 2.12 0.57 2.02 1.22 6.21 56.8 0.92 0.98 0.01 0.01 0.31 74.1
    Zn 182 161 324 270 223 1 481 1 311 2 536 2 202 1 271 5 033 1 704 1 483 1 159 3 342
    Ga 0.93 2.96 2.43 1.30 0.64 6.40 0.85 4.45 0.42 0.74 0.72 0.53 0.46 0.79 0.61
    Ge 2.31 4.60 1.59 BDL 1.62 4.09 4.12 1.24 1.86 2.82 2.14 1.59 2.41 1.11 0.90
    As BDL BDL 27.3 53.6 62.6 34.0 17.5 57.7 13.7 28.9 36.7 2.21 BDL 2.48 17.8
    Se 450 408 375 226 73.3 54.2 74.1 22.4 87.3 57.6 53.7 46.4 46.9 40.6 55.3
    Mo 1.35 3.19 9.05 47.2 0.11 8.52 0.82 18.1 1.69 15.3 3.32 BDL BDL 0.10 16.4
    Ag 9.91 11.0 28.1 25.5 44.0 30.5 8.29 24.4 14.5 24.7 34.9 1.65 1.69 217 246
    Cd 3.20 1.92 8.02 2.57 6.12 17.1 11.3 19.1 15.8 15.4 21.1 5.57 5.23 5.64 10.9
    In 7.21 7.89 8.15 6.04 43.3 28.7 24.2 33.8 12.8 19.8 36.7 27.5 28.7 76.1 24.4
    Sn 48.0 46.3 20.3 39.4 3.06 4.26 4.14 4.83 19.5 29.1 7.24 5.09 4.38 44.0 7.66
    Sb 1.65 10.8 0.28 1.06 52.3 44.8 6.40 23.0 6.09 109 7.04 0.10 0.41 0.13 11.0
    Te 1.11 5.69 6.39 4.71 1.88 9.27 2.41 2.83 0.90 0.49 1.31 0.99 0.70 1.06 3.10
    Au 0.14 0.19 0.86 0.21 0.03 0.02 0.01 BDL BDL BDL 0.11 0.02 BDL BDL 0.11
    Tl 0.02 0.17 0.40 0.31 0.83 0.90 0.14 1.18 0.13 1.14 0.25 0.02 0.03 BDL 2.19
    Pb 155 193 1353 420 12.5 308 36.6 226 24.9 664 77.7 0.93 0.55 3.51 300
    Bi 3.23 9.01 11.8 12.0 17.3 46.3 15.0 26.3 5.27 7.66 2.90 0.83 0.76 3.02 130
    样品 Cu-06 Cu-07 Cu-09 Cu-10
    编号 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4
    Ti 7.32 3.75 BDL 0.05 2.43 10.03 BDL BDL 0.73 44.6 4.65 4.67 1252 4.03 4.65
    Cr 11.7 19.1 4.6 2.2 50.5 27.7 7.5 22.5 36.8 28.1 208 95.3 193 54.7 14.8
    Mn 18.6 5.79 2.35 0.94 5.08 5.81 2.27 BDL 2.79 0.48 15.2 5.85 16.8 4.02 4.23
    Co 0.58 87.5 0.35 2.31 0.46 3.32 0.47 BDL 0.19 BDL 3.50 0.79 0.91 0.12 0.40
    Ni 0.42 3.37 0.12 0.01 0.22 0.57 0.01 0.01 0.06 0.29 0.01 0.64 0.57 0.01 0.35
    Zn 1 301 8 197 110 BDL 156 23.5 3.61 188 1881 158 1692 310 1085 104 152
    Ga 0.33 0.15 0.42 BDL 1.57 0.07 0.10 4.76 22.4 0.61 0.44 0.57 0.18 0.34 0.30
    Ge 0.96 1.44 0.75 1.86 1.57 0.55 1.82 0.84 1.62 0.60 0.95 1.14 1.03 0.66 1.22
    As 18.1 6.92 2.68 BDL 4.88 29.6 0.97 2.85 33.9 46.2 127 42.3 29.1 4.92 87.9
    Se 46.1 21.0 49.3 185 75.9 36.7 118 27.0 15.2 59.4 45.5 54.4 34.5 36.2 17.9
    Mo 899 BDL 1.38 BDL 18.6 23.0 BDL BDL 0.25 0.12 1.54 0.51 1.63 0.05 0.52
    Ag 89.0 269 17.0 5.86 18.5 8.11 2.12 0.43 11.9 5.04 8.62 1.37 3.91 5.07 0.29
    Cd 4.12 24.0 0.07 0.29 0.60 BDL 0.08 1.61 7.58 4.65 17.4 2.59 10.6 2.40 4.60
    In 45.0 23.5 2.19 1.85 2.61 2.20 2.88 13.0 80.8 6.09 13.1 5.22 15.0 9.84 7.08
    Sn 4.57 18.4 2.57 9.37 15.4 9.49 4.53 186 273 1.94 38.0 1.12 3.84 1.44 1.45
    Sb 4.53 0.54 0.11 BDL 4.63 0.43 0.22 0.14 1.97 2.84 41.4 3.26 4.10 0.49 0.85
    Te 1.86 0.54 7.05 2.21 5.41 11.3 2.26 0.93 0.72 BDL 4.05 1.99 1.04 0.27 1.09
    Au BDL BDL BDL BDL 0.18 0.06 BDL 0.04 BDL BDL 0.03 0.01 0.03 BDL 0.01
    Tl 1.46 0.08 BDL BDL 0.10 1.26 0.04 BDL 1.05 0.17 0.18 0.07 0.19 0.09 0.02
    Pb 179 7.62 4.04 2.32 11.6 13.0 16.8 3.59 44.6 10.0 102 58.6 53.1 123 5.01
    Bi 73.3 6.75 0.44 BDL 5.37 1.60 0.13 0.79 2.54 3.00 12.1 1.44 3.28 1.73 0.19
    样品 Cu-10 Cu-28 Cu-24 Cu-50 TD-2
    编号 5 1 2 3 4 1 2 3 4 5 1 2 3 4 1
    Ti 23.5 BDL BDL 3.25 5.53 418 9.51 4.18 46.9 1.46 0.24 0.07 0.34 0.37 BDL
    Cr 52.6 167 78.9 731 118 680 108 227 449 14.9 1.1 1.4 0.4 2.4 2.4
    Mn 0.95 0.18 0.90 4.02 2.79 0.53 2.63 BDL 10.5 0.41 2.52 2.79 2.81 5.89 0.81
    Co 0.05 0.12 BDL 0.33 0.05 1.45 0.31 0.53 4.55 0.02 10.5 4.34 5.25 1474 3.57
    Ni 0.01 BDL 0.03 0.75 0.46 0.95 0.02 BDL 2.48 0.11 0.20 1.95 1.45 162 0.53
    Zn 129 176 250 1146 203 198 115 99.5 555 262 735 1196 3097 1033 10.7
    Ga 0.16 0.03 0.13 0.10 0.10 0.35 5.03 0.29 0.57 0.13 0.28 0.14 0.16 0.17 0.97
    Ge 1.80 2.48 1.12 6.45 1.12 0.12 0.57 1.15 0.89 1.20 1.85 2.09 1.95 2.81 49.4
    As 29.2 8.52 6.95 37.7 29.2 2.10 5.22 4.86 26.8 1.33 3.74 3.14 2.67 0.95 2.94
    Se 33.7 29.5 37.2 29.0 39.9 53.0 59.9 37.6 25.2 32.8 9.07 22.3 20.3 10.9 24.2
    Mo 0.09 0.36 0.91 2.02 0.22 48.6 23.0 56.2 741 0.34 BDL 0.01 BDL BDL 0.08
    Ag 1.01 13.0 9.77 28.8 15.6 20.7 146 72.0 78.5 1.29 17.2 52.6 51.0 90.4 2.63
    Cd 2.59 2.03 3.13 6.39 1.08 2.28 BDL 0.89 3.55 3.20 1.21 2.72 3.99 1.04 0.08
    In 13.8 2.10 1.67 8.02 5.34 10.3 17.6 12.8 11.9 13.0 23.3 42.3 48.2 25.5 0.47
    Sn 1.18 BDL 1.25 4.32 0.22 19.4 8.85 2.93 4.56 8.88 19.4 84.1 85.8 78.4 0.88
    Sb 1.47 2.02 1.67 5.39 7.11 1.70 4.48 2.32 51.2 0.36 BDL 0.01 0.18 1.23 0.17
    Te 0.62 0.87 0.41 3.17 1.28 0.41 0.30 0.39 0.99 0.43 0.10 1.44 1.38 0.10 BDL
    Au BDL BDL 0.04 0.09 0.22 0.09 BDL 0.08 0.11 BDL 0.09 0.14 0.10 0.16 0.01
    Tl BDL BDL 0.02 0.04 0.08 0.08 0.05 0.03 0.26 0.06 0.01 0.02 BDL 0.36 BDL
    Pb 18.4 23.6 47.1 166 40.6 18.8 55.8 109 190 0.69 1.43 0.38 0.48 7.97 4.81
    Bi 1.30 8.19 5.33 6.07 30.7 2.48 4.86 8.35 16.6 0.33 2.84 4.18 3.05 7.30 0.06
    样品 TD-2 Cu-51-3 Cu-21 Cu-22
    编号 2 3 4 1 2 1 2 3 4 5 6 1 2 3 4
    Ti BDL 21.6 2.04 1.97 0.42 1.17 0.14 BDL 1.13 BDL BDL 2.25 1.47 BDL 6.39
    Cr 1.5 1.2 6.3 260 59.0 116 52.7 62.8 30.9 70.9 65.8 25.0 0.1 0.0 0.9
    Mn 1.33 1.51 15.7 4.31 2.52 0.85 BDL BDL 0.42 1.64 BDL 4.76 BDL 0.26 16.1
    Co 2.84 3.11 3.16 1.71 0.44 1.20 9.14 4.92 6.41 19.0 0.19 0.28 1.52 0.59 2.85
    Ni 0.60 0.40 1.05 0.29 0.27 1.51 1.06 0.01 0.92 0.37 0.01 0.34 23.9 0.74 17.6
    Zn 6.97 13.8 11.0 7.23 102 950 577 1660 493 765 554 442 210 497 498
    Ga 0.97 1.62 1.96 0.15 0.06 0.42 0.05 0.04 0.25 0.41 1.00 0.12 0.54 0.03 0.34
    Ge 47.0 57.2 66.4 1.20 1.94 2.18 1.39 0.85 0.90 0.89 2.20 0.62 1.32 1.33 1.22
    As BDL 2.69 1.12 BDL 2.43 3.63 3.12 1.62 0.32 3.59 0.48 BDL 0.53 1.23 BDL
    Se 7.44 10.8 7.92 3.29 26.9 138 96.4 70.2 98.0 234 33.3 99.2 91.5 83.8 117
    Mo BDL BDL 1.14 0.30 0.32 0.12 0.43 BDL 0.23 BDL BDL BDL BDL BDL BDL
    Ag 3.74 4.92 5.03 1.04 5.54 61.9 58.4 66.3 55.7 32.8 124 8.32 1.53 3.93 8.63
    Cd 0.10 0.02 BDL 0.10 0.52 12.0 4.52 6.50 4.40 11.6 3.03 0.93 0.46 2.13 1.80
    In 1.20 1.29 1.26 0.07 29.7 4.26 3.48 6.33 19.4 12.6 5.34 39.1 12.9 25.7 28.5
    Sn 0.33 BDL BDL 1.28 11.2 10.8 7.31 10.7 49.9 25.8 23.8 196 118 141 1260
    Sb 0.09 0.48 0.19 1.94 7.78 3.25 0.71 0.31 1.47 1.52 0.28 0.20 BDL BDL 0.53
    Te BDL 0.27 BDL 0.22 0.34 0.57 0.29 0.20 0.86 3.38 1.25 0.09 0.17 BDL 0.27
    Au 0.03 0.07 0.03 0.02 1.15 0.04 0.04 0.04 0.09 BDL BDL BDL BDL 0.01 0.01
    Tl 0.02 0.04 0.21 0.88 BDL 0.05 BDL BDL 0.22 0.04 0.02 0.02 0.03 BDL 0.01
    Pb 1.13 10.9 6.93 11.9 2.87 22.0 1.62 2.09 26.8 1.64 4.35 12.5 1.14 3.87 25.3
    Bi 0.12 0.77 1.23 1.48 8.84 0.61 0.03 0.04 0.88 0.13 0.06 5.91 0.03 0.08 9.22
    样品 Cu-22 Cu-29 Cu-43 Cu-100-1 Cu-93-1 MDL
    编号 5 6 1 2 3 4 1 2 1 2 3 4 5 1 2
    Ti 1.46 0.21 1.76 0.68 BDL 2.14 2.01 38.6 1.89 5.05 37.6 111 1907 0.22 0.84 1.20
    Cr 4.1 18.4 105 220 134 17.6 53.8 197 824 102 164 293 112 12.5 9.1 5.07
    Mn BDL 4.82 18.7 0.31 BDL 2.25 6.16 314 7.49 7.28 14.1 31.5 58.9 BDL 0.51 1.17
    Co 1.28 1.14 0.10 BDL BDL 0.17 3.54 30.7 0.80 0.98 2.91 6.78 6.97 1.92 0.15 0.21
    Ni 13.0 20.5 0.01 0.01 0.16 0.04 2.32 1.05 0.23 0.34 14.6 2.24 0.50 32.8 4.54 0.44
    Zn 175 212 5907 742 953 644 1012 4024 213 131 443 663 166 299 360 2.80
    Ga 0.03 0.47 26.1 25.3 4.75 37.8 8.19 7.28 0.10 0.03 0.17 0.69 1.79 0.52 0.17 0.03
    Ge 0.79 1.44 6.88 48.8 8.06 51.2 5.17 5.01 4.13 1.05 1.21 2.14 2.13 2.09 0.49 1.35
    As 0.28 0.21 31.4 BDL 27.4 8.09 149 11.8 8.86 7.27 686 45.0 137 0.14 0.74 10.60
    Se 98.9 65.2 17.4 52.2 32.4 14.4 118 126 0.72 2.42 3.22 2.42 7.22 15.6 15.2 3.55
    Mo BDL BDL BDL BDL BDL BDL 2.42 17.3 2.55 1.70 6.99 12.1 7.85 BDL 0.04 0.09
    Ag 7.83 13.5 16.1 9.44 23.6 16.1 11.8 20.9 9.40 1.93 69.8 7.68 18.5 25.6 15.0 0.04
    Cd 0.59 1.57 20.5 1.95 5.02 1.67 4.75 9.48 0.54 0.61 0.59 2.56 0.71 0.84 0.64 0.37
    In 16.5 19.0 16.7 9.79 8.13 11.5 1.97 1.66 0.66 1.34 0.50 5.57 5.51 7.34 8.80 0.07
    Sn 436 168 201 215 158 787 5.16 1.31 0.02 0.81 2.71 2.12 2.26 5.06 7.01 1.91
    Sb 0.38 0.63 7.90 3.21 15.9 17.0 31.1 19.4 3.25 1.55 99.4 1.08 1.89 0.21 0.08 0.41
    Te 0.48 0.31 4.32 1.34 1.49 1.17 0.41 0.35 0.28 BDL 0.29 BDL BDL 1.58 1.74 0.27
    Au 0.04 0.03 0.35 0.04 0.30 0.02 0.16 0.19 0.04 0.02 BDL BDL BDL BDL BDL 0.06
    Tl BDL 0.02 1.84 0.84 1.52 3.84 1.27 1.64 4.53 2.77 37.6 0.83 2.46 0.05 0.23 0.07
    Pb 1.52 39.6 205 156 112 8.73 2411 182 202 78.9 1296 257 121 5.46 3.01 0.11
    Bi 0.42 18.9 7.90 2.25 2.92 0.13 9.47 0.90 112 46.1 106 171 103 2.21 3.84 0.04
    注:BDL表示低于检测限(below detection limits); MDL为平均检测限(mean detection limits); 矿床名和矿床类型见表 1
    下载: 导出CSV

    表  3  黄铜矿微量元素数据来源统计

    Table  3.   Statistics table of trace element data sources of chalcopyrite

    类型(点数) 矿床(点数) 资料来源
    ED (112) Herja(10), Kochbulak(10), Toroiaga(59), Niuxingba(4), Zhengguang(29) 文献[20, 51-52]
    IOCG(82) Alcaparrosa(2), Las Pintadas(9), Santos(2), Dahongshan(28), Marcona(16), Mina Justa(15), Yinachang(10) 文献[53-57]
    MSD(316) Aguablanca(17), Alexo(10), Beni Bousera(1), Duluth(29), Jinchuan Complex(3), Kharaelakh(59), Mirabela complex(59), Noril′sk I(15), Serranía de Ronda(25), Sudbury Complex(128), Talnakh(5), Voisey′s Bay(20), Yangliuping(3) 文献[58]
    HD(46) Shimensi(11), Shizhuyuan(1), Taoxikeng(17), Weilasituo(12), Xianglushan(5) 文献[51, 59-61]
    PCD(205) 109(10), Asarel(30), Baita Bihor(20), Bor(10), Elastite(16), Chagele(32), Fenghuangshan(29), Larong(3), Oravita(40), Zhengguang(15) 文献[20, 52, 62-64]
    SEDEX(78) Bleikvassli(24), Broken Hill(15), Kapp Mineral(9), Mofjell(30) 文献[20]
    SMS(50) Chongsheng(5), Duanqiao(4), Kairei Vent(16), Longqi(6), Wocan(19) 文献[65-68]
    VMS(101) Alexandrinskoye(1), Dergamysh(2), Baiyinchang(27), Buribay(1), Çayeli(42), Hongtoushan(5), Oktyabrskoye(1), Safyanovskoye(3), Sultanovskoye(1), Talgan(1), Tash-Tau(1), Uzelga-1(1), Uzelga-4(1), Valentorskoye(1), Vorta(8), Yaman-Kasy(2), Yubileynoye(3) 文献[65, 69-71]
    注:ED为浅成低温热液型矿床;HD为高温热液钨锡型矿床;SMS为现代海底块状硫化物型矿床
    下载: 导出CSV

    表  4  黄铜矿微量元素最大值统计

    Table  4.   Statistical of maximum trace elements of chalcopyrite  wB/10-6

    类型 ED IOCG MSD HD PCD SEDEX SMS SSC VMS 总计
    Mn 73.4 1 758 1 537* 6 060 1 170 60.5 133 15.7* 515 6 060
    Co 15.7 1 900 10 980 68 94.7* 1474* 1781 3.57* 3 970 10 980
    Ni 3.38 163 9 360 14.9 74.1* 162* 06 1.05* 173 9 360
    Zn 3 440 1 818* 2 860 10 913 10 900 3 097 4 093 102* 10 205 10 913
    Ga 4.68 24.3* 0.42* 4.08 22.4* 33.7 175 1.96* 37.8* 175
    Ge 26.2* 3.48* 2.3 7.5 2.81* 457 66.4* 51.2* 457
    As 1 752 128 50.2 2 813 735 13.6 1249 2.94* 1418 2 813
    Se 119 394 353 49.2 964 32.9 1283 26.9* 1536 1 536
    Mo 8.06 12.2 4.74 16.9 899* 0.01* 216 1.14* 651 899*
    Ag 959 516 380 1 341 410 1 450 174 5.54* 718 1 450
    Cd 43.4 9.84* 69.7 215 145 82.1 23.8 0.52* 55 215
    In 376 697* 5.09 430 539 48.2* 61.2 29.7* 112 697*
    Sn 77.3 1 025* 274 4 077 1 448 1 521 65.5 11.2* 2 009 4 077
    Sb 208 14.9* 22.2 27.8 109* 158 108 7.78* 465 465
    Te 263 11.6 70 11.3* 1.88 110 0.34* 7 006 7 006
    Au 17.9 616 1.28 0.94* 0.86 3.47 1.15* 148 616
    Tl 0.58 1.22 2.13 1.73 2.19* 1.74 19 0.88* 97.1 97.1
    Pb 1 425 472* 247 2 933 1 353* 98.4 761 11.9* 7 522 7 522
    Bi 1 913 42.9* 19.7 4 423 130* 7.3* 26.3 8.84* 1 386 4 423
    注:空白为无数据,带*来自本研究,其余来自表 3中文献
    下载: 导出CSV

    表  5  黄铜矿微量元素平均值统计

    Table  5.   Statistical of average trace elements of chalcopyrite  wB/10-6

    类型 ED IOCG MSD HD PCD SEDEX SMS SSC VMS 总计
    Mn 7.43 52.9 186 644 25.4 13.5 7.73 4.37 24.9 47.7
    Co 2.28 35.8 502 8.24 4.84 18.5 177 2.47 36.4 147
    Ni 0.25 10.8 249 2.76 0.97 2.4 10.4 0.52 3.7 65.3
    Zn 768 309 424 5 712 716 502 887 25.3 1 189 846
    Ga 0.58 1.49 0.12 2.38 0.79 5.84 8.84 0.96 2.96 2.36
    Ge 1.58 2.65 0.51 1.96 2.17 34.9 37.2 4.91 8.9
    As 29 9.96 4.07 351 13.6 2.45 81 1.53 60.8 31.3
    Se 18.3 49.7 89 19.6 60 7.22 255 13.4 156 78.8
    Mo 1.31 0.71 0.2 1.81 21 0.001 8.42 0.31 18.6 8
    Ag 147 69.2 14.9 322 26 153 54.9 3.82 54.6 61.8
    Cd 14 2.41 14.1 83.8 10.7 14.2 5.56 0.14 7.23 14.6
    In 27.5 23.3 1.87 148 35.1 10.5 7.85 5.67 21.7 29.1
    Sn 18.8 30.3 24.8 640 55.4 362 12.4 2.28 90 92.5
    Sb 4.78 1.72 0.57 3.11 2.93 11.9 6.45 1.78 20.6 5.68
    Te 6.5 2.21 6.97 0.98 0.21 14.2 0.14 112 15.1
    Au 0.34 8.32 0.04 0.05 0.03 0.4 0.22 9.47 2.22
    Tl 0.04 0.18 0.22 0.4 0.11 0.1 1.63 0.19 4.07 0.87
    Pb 48.2 29.9 25.1 402 43.3 6.98 41.2 6.41 512 112
    Bi 67 5.13 0.83 1 056 5.81 0.26 1.07 2.09 52.9 50.3
    注:空白为无数据;计算时本文低于检测限的数据赋0值
    下载: 导出CSV
  • [1] 赵振华, 严爽. 矿物: 成矿与找矿[J]. 岩石学报, 2019, 35(1): 31-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901004.htm

    Zhao Z H, Yan S. Minerals and relevant metallogeny and exploration[J]. Acta Petrologica Sinica, 2019, 35(1): 31-68(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901004.htm
    [2] Bralia A G, Sabatini G, Troja F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J]. Mineralium Deposita, 1979, 14(3): 353-374.
    [3] Bajwah Z U, Seccombe P K, Offler R. Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia[J]. Mineralium Deposita, 1987, 22(4): 292-300.
    [4] Brill B A. Trace-element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn deposit, Australia[J]. Canadian Mineralogist, 1989, 27: 263-274.
    [5] 宋学信, 张景凯. 中国各种成因黄铁矿的微量元素特征[C]//佚名. 中国地质科学院矿床地质研究所文集(18). 北京: 地质出版社, 1986.

    Song X X, Zhang J K. Minor elements in pyrites of various genetic types from China[C]//Bulletin of the Institute of Mineral Deposits Chinese Academy of Geological Sciences. Beijing: Geological Publishing House, 1986(in Chinese).
    [6] 冷成彪. 滇西北红山铜多金属矿床的成因类型: 黄铁矿和磁黄铁矿LA-ICPMS微量元素制约[J]. 地学前缘, 2017, 24(6): 162-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706016.htm

    Leng C B. Genesis of Hongshan Cu polymetallic large deposit in the Zhongdian area, NW Yunnan: Constraints from LA-ICPMS trace elements of pyrite and pyrrhotite[J]. Earth Science Frontiers, 2017, 24(6): 162-175(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706016.htm
    [7] 严育通, 李胜荣, 贾宝剑, 等. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 地学前缘, 2012, 19(4): 214-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204024.htm

    Yan Y T, Li S R, Jia B J, et al. Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types[J]. Earth Science Frontiers, 2012, 19(4): 214-226(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204024.htm
    [8] Gregory D D, Cracknell M J, Large R R, et al. Distinguishing ore deposit type and barren sedimentary pyrite using laser ablation-inductively coupled plasma-mass spectrometry trace element data and statistical analysis of large data sets[J]. Economic Geology, 2019, 114(4): 771-786. doi: 10.5382/econgeo.4654
    [9] Huston D L, Sie S H, Suter G F, et al. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits, Part Ⅱ. Selenium levels in pyrite: Comparison with δ34S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Economic Geology, 1995, 90(5): 1167-1196. doi: 10.2113/gsecongeo.90.5.1167
    [10] Fitzpatrick A J. The measurement of the Se/S ratios in sulphide minerals and their application to ore deposit studies[D]. Ontario: Queen's University, 2008.
    [11] Dupuis C, Beaudoin G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 2011, 46(4): 319-335. doi: 10.1007/s00126-011-0334-y
    [12] Nadoll P, Angerer T, Mauk J L, et al. The chemistry of hydrothermal magnetite: A review[J]. Ore Geology Reviews, 2014, 61: 1-32. doi: 10.1016/j.oregeorev.2013.12.013
    [13] Wen G, Li J W, Hofstra A H, et al. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: Insights from the Handan-Xingtai iron district, North China Craton[J]. Geochimica et Cosmochimica Acta, 2017, 213: 255-270. doi: 10.1016/j.gca.2017.06.043
    [14] Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, et al. Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration[J]. Ore Geology Reviews, 2016, 78: 388-408. doi: 10.1016/j.oregeorev.2016.04.014
    [15] Huang X W, Sappin A A, Boutroy É, et al. Trace element composition of igneous and hydrothermal magnetite from porphyry deposits: Relationship to deposit subtypes and magmatic affinity[J]. Economic Geology, 2019, 114(5): 917-952. doi: 10.5382/econgeo.4648
    [16] Huang X W, Boutroy É, Makvandi S, et al. Trace element composition of iron oxides from IOCG and IOA deposits: Relationship to hydrothermal alteration and deposit subtypes[J]. Mineralium Deposita, 2019, 54(4): 525-552. doi: 10.1007/s00126-018-0825-1
    [17] Zhang Q. Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits[J]. Chinese Journal of Geochemistry, 1987, 6(2): 177-190. doi: 10.1007/BF02872218
    [18] Ye L, Cook N J, Ciobanu C L, et al. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study[J]. Ore Geology Reviews, 2011, 39(4): 188-217. doi: 10.1016/j.oregeorev.2011.03.001
    [19] Frenzel M, Hirsch T, Gutzmer J. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type: A meta-analysis[J]. Ore Geology Reviews, 2016, 76: 52-78. doi: 10.1016/j.oregeorev.2015.12.017
    [20] George L L, Cook N J, Crowe B B P, et al. Trace elements in hydrothermal chalcopyrite[J]. Mineralogical Magazine, 2018, 82(1): 59-88. doi: 10.1180/minmag.2017.081.021
    [21] 陈殿芬. 我国一些铜镍硫化物矿床主要金属矿物的特征[J]. 岩石矿物学杂志, 1995, 14(4): 345-354. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW504.005.htm

    Chen D F. Characteristics of main metallic minerals in some copper-nickel sulfide deposits of China[J]. Acta Petrologica et Mineralogica, 1995, 14(4): 345-354(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW504.005.htm
    [22] Duran C J, Dubé-Loubert H, Pagé P, et al. Applications of trace element chemistry of pyrite and chalcopyrite in glacial sediments to mineral exploration targeting: Example from the Churchill Province, northern Quebec, Canada[J]. Journal of Geochemical Exploration, 2019, 196: 105-130. doi: 10.1016/j.gexplo.2018.10.006
    [23] Sylvester P J. Matrix effects in Laser Ablation-ICP-MS[M]//Anon. Laser ablation ICP-MS in the earth sciences: Current practices and outstanding issues. Jackson S E: Mineralogical Association of Canada, 2008.
    [24] 李艳军, 魏俊浩. 铅锌矿床中微量元素富集及关键测试技术研究新进展[J]. 地质科技情报, 2014, 33(1): 191-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401030.htm

    Li Y J, Wei J H. A review of trace elements enrichment in sulfides from Pb-Zn deposits and associated critical testing technology[J]. Geological Science and Technology Information, 2014, 33(1): 191-198(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401030.htm
    [25] Chew D, Drost K, Marsh J H, et al. LA-ICP-MS imaging in the geosciences and its applications to geochronology[J]. Chemical Geology, 2021, 559: 119917. doi: 10.1016/j.chemgeo.2020.119917
    [26] 栾燕, 孙晓辉, 刘民武, 等. 磁铁矿LA-ICP-MS原位微量元素分析方法研究[J]. 地质科技通报, 2021, 40(2): 167-175. doi: 10.19509/j.cnki.dzkq.2021.0215

    Luan Y, Sun X H, Liu M W, et al. Analysis method for in-situ trace element determination of magnetite by LA-ICP-MS[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 167-175(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0215
    [27] Baker T. Alteration, mineralization, and fluid evolution at the Eloise Cu-Au deposit, Cloncurry District, Northwest Queensland, Australia[J]. Economic Geology, 1998, 93(8): 1213-1236. doi: 10.2113/gsecongeo.93.8.1213
    [28] Pollard P J, Taylor R G, Peters L, et al. 40Ar-39Ar dating of Archean iron oxide Cu-Au and Paleoproterozoic granite-related Cu-Au deposits in the Carajás Mineral Province, Brazil: Implications for genetic models[J]. Mineralium Deposita, 2019, 54(3): 329-346. doi: 10.1007/s00126-018-0809-1
    [29] De Haller A, Fontbote L. The raul-condestable iron oxide copper-gold deposit, central coast of Peru: Ore and related hydrothermal alteration, sulfur isotopes, and thermodynamic constraints[J]. Economic Geology, 2009, 104(3): 365-384. doi: 10.2113/gsecongeo.104.3.365
    [30] Walker A T, Evans K A, Kirkland C L, et al. Tracking mineralisation with in situ multiple sulphur isotopes: A case study from the Fraser Zone, western Australia[J]. Precambrian Research, 2019, 332: 105379. doi: 10.1016/j.precamres.2019.105379
    [31] Zhang J Y, Lei H L, Ma C Q, et al. Geochemical and thermodynamical modeling of magmatic sources and processes for the Xiarihamu sulfide deposit in the eastern Kunlun Orogen, western China[J]. Journal of Geochemical Exploration, 2018, 190: 345-356. doi: 10.1016/j.gexplo.2018.04.005
    [32] Warnaars F W, Holmgren D C, Barassi F S. Porphyry copper and tourmaline breccias at Los Bronces-Rio Blanco, Chile[J]. Economic Geology, 1985, 80(6): 1544-1565. doi: 10.2113/gsecongeo.80.6.1544
    [33] Tapia J, Townley B, Córdova L, et al. Hydrothermal alteration and its effects on the magnetic properties of Los Pelambres, a large multistage porphyry copper deposit[J]. Journal of Applied Geophysics, 2016, 132: 125-136. doi: 10.1016/j.jappgeo.2016.07.005
    [34] Pollard P J, Taylor R G, Peters L. Ages of intrusion, alteration, and mineralization at the Grasberg Cu-Au deposit, Papua, Indonesia[J]. Economic Geology, 2005, 100(5): 1005-1020. doi: 10.2113/gsecongeo.100.5.1005
    [35] Del Rio-Salas R, Ochoa-Landín L, Valencia-Moreno M, et al. New U-Pb and Re-Os geochronology of Laramide porphyry copper mineralization along the Cananea lineament, northeastern Sonora, Mexico: Contribution to the understanding of the Cananea copper district[J]. Ore Geology Reviews, 2017, 81: 1125-1136. doi: 10.1016/j.oregeorev.2015.11.029
    [36] Love D A, Clark A H, Glover J K. The lithologic, stratigraphic, and structural setting of the Giant Antamina copper-zinc skarn deposit, Ancash, Peru[J]. Economic Geology, 2004, 99(5): 887-916. doi: 10.2113/gsecongeo.99.5.887
    [37] Reed A, Cannell J. Implicit modelling of the Las Bambas deposits, Peru[J]. ASEG Extended Abstracts, 2018, 2018(1): 1-6.
    [38] 彭建, 戴芳容, 张敏, 等. 秘鲁特罗莫克铜矿SABC流程考查及优化措施研究[J]. 有色金属: 选矿部分, 2018(6): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201806005.htm

    Peng J, Dai F R, Zhang M, et al. Research on the SABC process investigation and optimization measures in Peru Toromocho copper mine[J]. Nonferrous Metals: Mineral Processing Section, 2018(6): 23-28(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201806005.htm
    [39] Quang C X, Clark A H, Lee J K W. 40Ar-39Ar ages of hypogene and supergene mineralization in the Cerro Verde-Santa Rosa porphyry Cu-Mo cluster, Arequipa, Peru[J]. Economic Geology, 2003, 98(8): 1683-1696. doi: 10.2113/gsecongeo.98.8.1683
    [40] 王宏, 王疆丽, 陈慕天, 等. 老挝川圹省Phu Kham铜金矿床地质特征及找矿方向[J]. 地质找矿论丛, 2014, 29(1): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201401008.htm

    Wang H, Wang J L, Chen M T, et al. Geological characteristics and prospecting index of the PhuKham Cu-Au deposit in Xiangkhouang Province, Laos[J]. Contributions to Geology and Mineral Resources Research, 2014, 29(1): 66-71(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201401008.htm
    [41] Haynes F M, Titley S R. The evolution of fracture-related permeability within the Ruby Star granodiorite, Sierrita porphyry copper deposit, Pima County, Arizona[J]. Economic Geology, 1980, 75(5): 673-683. doi: 10.2113/gsecongeo.75.5.673
    [42] Pollock M V, Spry P G, Tott K A, et al. The origin of the sediment-hosted Kanmantoo Cu-Au deposit, South Australia: Mineralogical considerations[J]. Ore Geology Reviews, 2018, 95: 94-117. doi: 10.1016/j.oregeorev.2018.02.017
    [43] 殷学清, 林海涛, 苏治坤, 等. 东川式铜矿的成矿作用及后期叠加改造: 来自硫化物原位硫同位素的制约[J]. 矿床地质, 2021, 40(1): 34-52. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202101003.htm

    Yin X Q, Lin H T, Su Z K, et al. Mineralization and subsequent overprint history of Dongchuan-type copper deposits: Constraints from in situ sulfur isotope of sulfides[J]. Mineral Deposits, 2021, 40: 34-52(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202101003.htm
    [44] Zhao X F, Zhou M F, Hitzman M W, et al. Late paleoproterozoic to Early Mesoproterozoic Tangdan sedimentary rock-hosted strata-bound copper deposit, Yunnan Province, southwest China[J]. Economic Geology, 2012, 107(2): 357-375. doi: 10.2113/econgeo.107.2.357
    [45] Cailteux J L H, Kampunzu A B, Lerouge C, et al. Genesis of sediment-hosted stratiform copper-cobalt deposits, central African copperbelt[J]. Journal of African Earth Sciences, 2005, 42(1/5): 134-158.
    [46] Huston D L, Champion D C, Mernagh T P, et al. Metallogenesis and geodynamics of the Lachlan Orogen: New (and old) insights from spatial and temporal variations in lead isotopes[J]. Ore Geology Reviews, 2016, 76: 257-267. doi: 10.1016/j.oregeorev.2015.07.005
    [47] Seccombe P K, Jiang Z, Downes P M. Sulfur isotope and fluid inclusion geochemistry of metamorphic Cu-Au vein deposits, central Cobar area, NSW, Australia[J]. Australian Journal of Earth Sciences, 2017, 64(4): 537-556. doi: 10.1080/08120099.2017.1297330
    [48] 向鹏, 王建雄, 姚华舟, 等. 厄立特里亚比萨(Bisha)VMS型多金属矿床的研究进展及认识[J]. 地质科技情报, 2013, 32(5): 118-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201305019.htm

    Xiang P, Wang J X, Yao H Z, et al. Geological characteristics, tectonic environment and the type of Bisha volcanic-associated massive sulfide polymetallic deposit, western Eritrea[J]. Geological Science and Tecnology Information, 2013, 32(5): 118-125(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201305019.htm
    [49] Sánchez-España J, Velasco F, Boyce A J, et al. Source and evolution of ore-forming hydrothermal fluids in the northern Iberian pyrite belt massive sulphide deposits (SW Spain): Evidence from fluid inclusions and stable isotopes[J]. Mineralium Deposita, 2003, 38(5): 519-537. doi: 10.1007/s00126-002-0326-z
    [50] Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
    [51] 孙颖超. 赣南典型钨矿床、铅锌矿床中黄铜矿的矿物学研究[D]. 北京: 中国地质大学(北京), 2017.

    Sun Y C. Mineralogy of chalcopyrite from the typical tungsten and lead-zinc deposits in southern Jiangxi[D]. Beijing: China University of Geosciences (Beijing), 2017 (in Chinese with English abstract).
    [52] Song G X, Cook N J, Wang L, et al. Gold behavior in intermediate sulfidation epithermal systems: A case study from the Zhengguang gold deposit, Heilongjiang Province, NE-China[J]. Ore Geology Reviews, 2019, 106: 446-462. doi: 10.1016/j.oregeorev.2019.02.001
    [53] Del Real I, Thompson J F H, Simon A C, et al. Geochemical and isotopic signature of pyrite as a proxy for fluid source and evolution in the Candelaria-Punta Del Cobre iron oxide copper-gold district, Chile[J]. Economic Geology, 2020, 115(7): 1493-1518. doi: 10.5382/econgeo.4765
    [54] 李萍. 云南武定迤纳厂矿床主要矿物地球化学特征及矿床成因探讨[D]. 成都: 成都理工大学, 2015.

    Li P. Geochemical characteristics of essential minerals and genesis of Yinachang deposit, Wuding, Yunnan[D]. Chengdu: Chengdu University of Technology, 2015 (in Chinese with English abstract).
    [55] Li R C, Chen H Y, Xia X P, et al. Ore fluid evolution in the giant Marcona Fe-(Cu) deposit, Perú: Evidence from in-situ sulfur isotope and trace element geochemistry of sulfides[J]. Ore Geology Reviews, 2017, 86: 624-638. doi: 10.1016/j.oregeorev.2017.03.025
    [56] Li R C, Chen H Y, Xia X P, et al. Using integrated in-situ sulfide trace element geochemistry and sulfur isotopes to trace ore-forming fluids: Example from the Mina Justa IOCG deposit (southern Perú)[J]. Ore Geology Reviews, 2018, 101: 165-179. doi: 10.1016/j.oregeorev.2018.06.010
    [57] 苏治坤. 康滇地区大红山IOCG矿床成矿作用: 矿物微区地球化学及年代学的成因启示[D]. 武汉: 中国地质大学(武汉), 2019.

    Su Z K. Metallogenesis of the Dahongshan Fe-Cu-(Au) deposit in the Kangdian region: Constraints from geochemical and geochronological microanalyses[D]. Wuhan: China University of Geosciences(Wuhan), 2019(in Chinese with English abstract).
    [58] Mansur E T, Barnes S, Duran C J. An overview of chalcophile element contents of pyrrhotite, pentlandite, chalcopyrite, and pyrite from magmatic Ni-Cu-PGE sulfide deposits[J]. Mineralium Deposita, 2021, 56(1): 179-204. doi: 10.1007/s00126-020-01014-3
    [59] 陶兰初. 维拉斯托多金属矿床硫化物LA-ICP-MS微量元素特征及其意义[D]. 北京: 中国地质大学(北京), 2017.

    Tao L C. In situ LA-ICP-MS trace element analysis of sulfides from Weilasituo polymetallic deposit and its significance[D]. Beijing: China University of Geosciences (Beijing), 2017(in Chinese with English abstract).
    [60] Sun K K, Chen B, Deng J, et al. Source of copper in the giant Shimensi W-Cu-Mo polymetallic deposit, South China: Constraints from chalcopyrite geochemistry and oxygen fugacity of ore-related granites[J]. Ore Geology Reviews, 2018, 101: 919-935. doi: 10.1016/j.oregeorev.2018.08.029
    [61] 吴胜华, 孙冬阳, 李军. 柿竹园和香炉山W多金属矿床中硫化物微量元素特征: 来自原位LA-ICP-MS分析[J]. 岩石学报. 2020, 36(1): 245-256. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001020.htm

    Wu S H, Sun D Y, Li J. Comparison of trace elements in sulfides from the Shizhuyuan and Xianglushan W polymetallic deposits: Constrained by LA-ICP-MS analysis[J]. Acta Petrologica Sinica, 2020, 36(1): 245-256(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001020.htm
    [62] 张永超. 西藏查个勒铅锌钼铜矿床特征及成因: 来自流体包裹体、矿物学、年代学和地球化学证据[D]. 武汉: 中国地质大学(武汉), 2019.

    Zhang Y C. Fluid inclusion, mineralogical, geochronological, and geochemical constrains on the characteristics and genesis of the Chagele Pb-Zn-Mo-Cu deposit in Tibet, China[D]. Wuhan: China University of Geosciences(Wuhan), 2019 (in Chinese with English abstract).
    [63] Liu R, Chen G, Yang J. Compositions of Cu-(Fe)-sulfides in the 109 reduced granite-related Cu deposit, Xinjiang, Northwest China: Implications to the characteristics of ore-forming fluids[J]. Geofluids, 2020, 2020: 1-11.
    [64] Xie J C, Tang D W, Qian L, et al. Geochemistry of sulfide minerals from skarn Cu (Au) deposits in the Fenghuangshan ore field, Tongling, eastern China: Insights into ore-forming process[J]. Ore Geology Reviews, 2020, 122: 103537. doi: 10.1016/j.oregeorev.2020.103537
    [65] 于赫楠. VHMS型矿床矿物地球化学特征及成因意义[D]. 长春: 吉林大学, 2013.

    Yu H N. Mineral geochemical characteristics and genesis of VHMS-type deposits[D]. Changchun: Jilin University, 2013 (in Chinese with English abstract).
    [66] 张柏松. 西南印度洋中脊龙旂、断桥热液区成矿作用研究[D]. 北京: 中国地质大学(北京), 2019.

    Zhang B S. Study of mineralization at the Longqi and Duanqiao hydrothermal fields, Southwest Indian Ridge[D]. Beijing: China University of Geosciences (Beijing), 2019(in Chinese with English abstract).
    [67] Wang Y J, Han X Q, Petersen S, et al. Mineralogy and trace element geochemistry of sulfide minerals from the Wocan hydrothermal field on the slow-spreading Carlsberg Ridge, Indian Ocean[J]. Ore Geology Reviews, 2017, 84: 1-19. doi: 10.1016/j.oregeorev.2016.12.020
    [68] Wang Y J, Han X Q, Petersen S, et al. Trace metal distribution in sulfide minerals from ultramafic-hosted hydrothermal systems: Examples from the Kairei Vent Field, Central Indian Ridge[J]. Minerals, 2018, 8(11): 526. doi: 10.3390/min8110526
    [69] Revan M K, Genç Y, Maslennikov V V, et al. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey)[J]. Ore Geology Reviews, 2014, 63: 129-149. doi: 10.1016/j.oregeorev.2014.05.006
    [70] Maslennikov V V, Maslennikova S P, Large R R, et al. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: Mineral and trace element comparison with modern black, grey, white and clear smokers[J]. Ore Geology Reviews, 2017, 85: 64-106.
    [71] 董凯. 甘肃白银厂铜矿成岩-成矿环境及其找矿意义[D]. 武汉: 中国地质大学(武汉), 2018.

    Dong K. Petrogenic, metallogenetic environment and its exploration significance in Baiyinchang copper deposit, Gansu Province[D]. Wuhan: China University of Geosciences(Wuhan), 2018(in Chinese with English abstract).
    [72] Leach D, Sangster D, Kelley K, et al. Sediment-hosted lead-zinc deposits: A global perspective[C]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. Economic Geology 100th Anniversary Volume 1905-2005. Littleton: Society of Economic Geologists, 2005, 100: 561-607.
    [73] Groves D I, Bierlein F P, Meinert L D, et al. Iron oxide copper-gold (IOCG) deposits through earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits[J]. Economic Geology, 2010, 105(3): 641-654.
    [74] Hitzman M, Kirkham R, Broughton D, et al. The sediment-hosted stratiform copper ore system[C]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. Economic Geology 100th Anniversary Volume 1905-2005, Littleton: Society of Economic Geologists, 2005.
    [75] Barnes S J, Staude S, Le Vaillant M, et al. Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: Massive, semi-massive and sulfide-matrix breccia ores[J]. Ore Geology Reviews, 2018, 101: 629-651.
    [76] Barnes S J, Mungall J E, Le Vaillant M, et al. Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: Disseminated and net-textured ores[J]. American Mineralogist, 2017, 102(3): 473-506.
    [77] Cook N J, Ciobanu C L, Pring A, et al. Trace and minor elements in sphalerite: A LA-ICPMS study[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4761-4791.
    [78] George L, Cook N J, Ciobanu C L, et al. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study[J]. American Mineralogist, 2015, 100(2/3): 548-569.
    [79] George L L, Cook N J, Ciobanu C L. Partitioning of trace elements in co-crystallized sphalerite-galena-chalcopyrite hydrothermal ores[J]. Ore Geology Reviews, 2016, 77: 97-116.
    [80] Maslennikov V V, Maslennikova S P, Large R R, et al. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS)[J]. Economic Geology, 2009, 104(8): 1111-1141.
    [81] 徐净, 李晓峰. 铟矿床时空分布、成矿背景及其成矿过程[J]. 岩石学报, 2018, 34(12): 3611-3626. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812011.htm

    Xu J, Li X F. Spatial and temporal distributions, metallogenic backgrounds and processes of indium deposits[J]. Acta Petrologica Sinica, 2018, 34(12): 3611-3626(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812011.htm
    [82] 李晓峰, 朱艺婷, 徐净. 关键矿产资源铟研究进展[J]. 科学通报, 2020, 65(33): 3678-3687. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033005.htm

    Li X F, Zhu Y T, Xu J. Indium as a critical mineral: A research progress report[J]. Chinese Science Bulletin, 2020, 65(33): 3678-3687(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033005.htm
    [83] 叶霖, 韦晨, 胡宇思, 等. 锗的地球化学及资源储备展望[J]. 矿床地质, 2019, 38(4): 711-728. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904003.htm

    Ye L, Chen W, Hu Y S, et al. Geochemistry of germanium and its resources reserves[J]. Mineral Deposits, 2019, 38(4): 711-728(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904003.htm
    [84] Wohlgemuth-Ueberwasser C C, Viljoen F, Petersen S, et al. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study[J]. Geochimica et Cosmochimica Acta, 2015, 159: 16-41.
    [85] 唐大为. 铜陵凤凰山矿田矽卡岩铜多金属矿床黄铁矿原位地球化学研究[D]. 合肥: 合肥工业大学, 2020.

    Tang D W. In situ geochemical study of pyrite from skarn copper polymetallic deposit in Fenghuangshan ore field, Tongling[D]. Hefei: Hefei University of Technology, 2020(in Chinese with English abstract).
    [86] Cook N J, Ciobanu C L, Brugger J, et al. Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via μ-XANES spectroscopy[J]. American Mineralogist, 2012, 97(2/3): 476-479.
    [87] Reich M, Kesler S E, Utsunomiya S, et al. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2781-2796.
    [88] Wu Y, Fougerouse D, Evans K, et al. Gold, arsenic, and copper zoning in pyrite: A record of fluid chemistry and growth kinetics[J]. Geology, 2019, 47(7): 641-644.
    [89] Frenzel M. The distribution of gallium, germanium and indium in conventional and non-conventional resources: Implications for global availability[D]. Freiberg: Technische Universität Bergakademie Freiberg, 2016.
    [90] Belissont R, Boiron M, Luais B, et al. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac-Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes[J]. Geochimica et Cosmochimica Acta, 2014, 126: 518-540.
    [91] Butler I B, Nesbitt R W. Trace element distributions in the chalcopyrite wall of a black smoker chimney: Insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Earth and Planetary Science Letters, 1999, 167(3): 335-345.
    [92] Reich M, Palacios C, Barra F, et al. "Invisible" silver in chalcopyrite and bornite from the Mantos Blancos Cu deposit, northern Chile[J]. European Journal of Mineralogy, 2013, 25(3): 453-460.
    [93] Machault J, Barbanson L, Augé T, et al. Mineralogical and microtextural parameters in metals ores traceability studies[J]. Ore Geology Reviews, 2014, 63: 307-327.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  652
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07

目录

    /

    返回文章
    返回