留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土工格室加固风积沙路基不同深度动力响应试验研究

张冰冰 刘杰 阿肯江·托呼提 王斌 艾钰皓

张冰冰, 刘杰, 阿肯江·托呼提, 王斌, 艾钰皓. 土工格室加固风积沙路基不同深度动力响应试验研究[J]. 地质科技通报, 2022, 41(6): 308-315. doi: 10.19509/j.cnki.dzkq.2021.0097
引用本文: 张冰冰, 刘杰, 阿肯江·托呼提, 王斌, 艾钰皓. 土工格室加固风积沙路基不同深度动力响应试验研究[J]. 地质科技通报, 2022, 41(6): 308-315. doi: 10.19509/j.cnki.dzkq.2021.0097
Zhang Bingbing, Liu Jie, Akangjiang Tohuti, Wang Bin, Ai Yuhao. Experimental study on the dynamic response of aeolian sand subgrade reinforced by geocells at different depths[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 308-315. doi: 10.19509/j.cnki.dzkq.2021.0097
Citation: Zhang Bingbing, Liu Jie, Akangjiang Tohuti, Wang Bin, Ai Yuhao. Experimental study on the dynamic response of aeolian sand subgrade reinforced by geocells at different depths[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 308-315. doi: 10.19509/j.cnki.dzkq.2021.0097

土工格室加固风积沙路基不同深度动力响应试验研究

doi: 10.19509/j.cnki.dzkq.2021.0097
基金项目: 

国家自然科学基金项目 51669031

新疆交通设计院科研基金项目 KY2019092504

详细信息
    作者简介:

    张冰冰(1992-), 男, 现正攻读建筑与土木工程专业硕士学位, 主要从事特殊地质路基研究工作。E-mail: 849206078@qq.com

    通讯作者:

    刘杰(1986-), 男, 高级工程师, 主要从事寒旱区特殊地质研究工作。E-mail: hfutliujie@163.com

  • 中图分类号: TU472

Experimental study on the dynamic response of aeolian sand subgrade reinforced by geocells at different depths

  • 摘要:

    风积沙路基的处理一直是沙漠公路建设面临的难题, 土工格室加固方法可为沙漠公路建设提供一条新路径, 结合S21线(乌鲁木齐-阿勒泰)沙漠公路路基现场试验, 研究不同路基深度动力响应特征, 对土工格室加固风积沙性能探究具有重要的价值及意义。结果表明: ①测试车速对路基不同深度处动应力、动加速度和动速度的时程曲线波动性影响较大, 且提高车速时, 动速度峰值、动加速度峰值和动应力峰值都出现了明显的增加; ②随着路基层深度的不断增加, 动速度幅值、动加速度幅值和动应力幅值均呈现出逐渐衰减的趋势, 其中在土工格室加固风积沙层衰减幅度最大; ③沿路基横断面水平方向上, 动速度幅值、动加速度幅值和动应力幅值均呈指数型衰减的趋势, 距振动源水平距离为5 m时, 其幅值衰减至10%左右, 可将此水平范围作为工程设计参考值。

     

  • 图 1  土工格室加筋机制图

    Figure 1.  Geocell reinforcement mechanism diagram

    图 2  路基填料的颗粒级配曲线

    Figure 2.  Particle gradation curve of subgrade filling

    图 3  现场埋设传感器图

    Figure 3.  Diagram of embedded sensors in the field

    图 4  现场数据采集图

    Figure 4.  Diagram of field data acquisition

    图 5  路基横断面传感器布置图

    Figure 5.  Transverse section sensor layout of the subgrade

    图 6  现场试验平面图

    Figure 6.  Field test plan

    图 7  现场试验测试图

    Figure 7.  Field experiment test diagram

    图 8  不同深度路基层动应力时程曲线

    Figure 8.  Time history curve of the dynamic stress of the road base at different depths

    图 9  不同测试车速下横向动应力分布图

    Figure 9.  Transverse dynamic stress distribution at different test speeds

    图 10  动应力幅值沿深度变化曲线

    Figure 10.  Curve of the dynamic acceleration amplitude along the depth

    图 11  不同深度路基动加速度时程曲线

    Figure 11.  Time history curve of the dynamic acceleration of the subgrade at different depths

    图 12  动加速度幅值随深度变化曲线

    Figure 12.  Curve of dynamic acceleration amplitude changing with depth

    图 13  动加速度幅值随水平距离的变化

    Figure 13.  Amplitude of dynamic acceleration varies with horizontal distance

    图 14  不同车速下动速度时程曲线

    Figure 14.  Time history curve of dynamic velocity at different vehicle speeds

    图 15  动速度沿深度方向的衰减曲线

    Figure 15.  Attenuation curve of the dynamic velocity along the depth direction

    图 16  动速度沿水平方向的衰减曲线

    Figure 16.  Attenuation curve of the dynamic velocity along the horizontal direction

    表  1  路基填料的物理性质指标

    Table  1.   Physical property index of subgrade filling

    路基填料 重度/(kN·m-3) 土粒相对密度Gs 含水率/% 不均匀系数Cu 曲线系数Cc
    风积沙 16.4 2.55 1.31 2.21 1.06
    级配砾石 22.0 2.59 5.70 62.34 1.56
    下载: 导出CSV
  • [1] 杨果林, 王亮亮, 房以河, 等. 云桂高速铁路不同防水层基床动力特性现场试验[J]. 岩石力学与工程学报, 2014, 33(8): 1672-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201408020.htm

    Yang G L, Wang L L, Fang Y H, et al. Field test on dynamic characteristics of different waterproof layer foundation beds in Yunnan-Guangxi High-Speed Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1672-1678 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201408020.htm
    [2] 楚纯洁, 赵景波, 吴楠楠, 等. 毛乌素沙地晚第四纪地层特征与沙漠化研究综述[J]. 地质科技情报, 2017, 36(5): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705003.htm

    Chu C C, Zhao J B, Wu N N, et al. Review of Late Quaternary strate characteristics and desertification on Mu us Dune Field in North China[J]. Geological Science and Technology Information, 2017, 36(5): 14-21 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705003.htm
    [3] Saride S, Rayabharapu V K, Vedpathak S. Evaluation of rutting behaviour of geocell reinforced sand subgrades under repeated loading[J]. Indian Geotechnical Journal, 2015, 45(4): 378-388. doi: 10.1007/s40098-014-0120-8
    [4] 邓鹏, 郭林, 蔡袁强, 等. 考虑填料-土工格室相互作用的加筋路堤力学响应研究[J]. 岩石力学与工程学报, 2015, 34(3): 621-630. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503022.htm

    Deng P, Guo L, Cai Y Q, et al. Study on the mechanical response of reinforced embankment considering the interaction between filler and geocell[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 621-630 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503022.htm
    [5] 李丽华, 文贝, 胡智, 等. 建筑垃圾填料与土工合成材料加筋剪切性能研究[J]. 武汉大学学报: 工学版, 2019, 52(4): 311-316. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201904005.htm

    Li L H, Wen B, Hu Z, et al. Study on reinforcement shear behavior of construction waste filler and geosynthetics[J]. Journal of Wuhan University: Engineering Science, 2019, 52(4): 311-316 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201904005.htm
    [6] Biswas A, Murali Krishna A, Dash S K. Influence of subgrade strength on the performance of geocell-reinforced foundation systems[J]. Geosynthetics International, 2013, 20(6): 376-388. doi: 10.1680/gein.13.00025
    [7] 周亚梅, 张孟喜, 吴越. 单个土工格室加筋效果的影响因素分析[J]. 上海交通大学学报, 2015, 49(7): 983-987, 992. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201507012.htm

    Zhou Y M, Zhang M X, Wu Y. Factores influencing the behavior of single geocell-reinforced sand[J]. Journal of Shanghai Jiaotong University, 2015, 49(7): 983-987, 992 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201507012.htm
    [8] 卢硕. 土工格室加固路基机理及应用研究[D]. 武汉: 武汉科技大学, 2020.

    Lu S. Study on the mechanism and application of geocellet for roadbed reinforcement[D]. Wuhan: Wuhan University of Science and Technology, 2020 (in Chinese with English abstract).
    [9] 韩晓, 张孟喜, 李嘉洋, 等. 高强土工格室加筋砂土地基模型试验研究[J]. 长江科学院院报, 2014, 31(3): 27-33. doi: 10.3969/j.issn.1001-5485.2014.03.004

    Han X, Zhang M X, Li J Y, et al. Model test of sand foundation reinforced by geocell with high strength[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(3): 27-33 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-5485.2014.03.004
    [10] 汤连生, 廖化荣, 刘增贤, 等. 路基土动荷载下力学行为研究进展[J]. 地质科技情报, 2006, 25(2): 103-112. doi: 10.3969/j.issn.1000-7849.2006.02.019

    Tang L S, Liao H R, Liu Z X, et al. Research progress of mechanical behavior of subgrade soil under dynamic load[J]. Geological Science and Technology Information, 2006, 25(2): 103-112 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2006.02.019
    [11] Hegde A, Sitharam T G. Behaviour of geocell reinforced soft clay bed subjected to incremental cyclic loading[J]. Geomechanics & Engineering, 2016, 10(4): 405-422.
    [12] Latha G M, Manju G S. Seismic response of geocell retaining walls through shaking table tests[J]. International Journal of Geosynthetics and Ground Engineering, 2016, 2(1): 1-15.
    [13] 孙州, 张孟喜, 姜圣卫. 条形荷载下土工格室加筋砂土路堤模型试验研究[J]. 岩土工程学报, 2015, 37(增刊2): 170-175. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2034.htm

    Sun Z, Zhang M X, Jiang S W. Model test of geo-cell reinforced sand embankment under strip loading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 170-175 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2034.htm
    [14] 金家庆, 徐超, 梁程, 等. 土工格室加筋垫层路堤破坏模式和稳定性评价[J]. 水文地质工程地质, 2019, 46(1): 86-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201901012.htm

    Jin J Q, Xu C, Liang C, et al. Failure mode and stability evaluation of geocell reinforced cushioned embankment[J]. Hydrogeology and Engineering Geology, 2019, 46(1): 86-94 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201901012.htm
    [15] 张健, 刘俊. 填石路堤强夯加固施工参数及路基动应力响应规律研究[J]. 铁道科学与工程学报, 2020, 17(1): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202001012.htm

    Zhang J, Liu J. Study on construction parameters of rock filled embankment reinforced by dynamic compaction and dynamic stress response law of subgrade[J]. Journal of Railway Science and Engineering, 2020, 17(1): 95-101 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202001012.htm
    [16] 邱长林, 张庆建. 路基地震峰值加速度响应特性振动台试验研究[J]. 地震工程学报, 2014, 36(4): 778-783. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201404003.htm

    Qiu C L, Zhang Q J. Shaking table test on response characteristics of seismic peak acceleration of subgrade[J]. Journal of Earthquake Engineering, 2014, 36(4): 778-783 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201404003.htm
    [17] 姜领发, 熊署丹, 陈善雄, 等. 列车荷载作用下高铁路基速度传递规律模型试验研究[J]. 岩土力学, 2015, 36(增刊1): 265-269.

    Jiang L F, Xiong S D, Chen S X, et al. Model experimental study on speed transfer law of high-speed railway under train loading[J]. Rock and Soil Mechanics, 2015, 36(S1): 265-269 (in Chinese with English abstract).
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  350
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08

目录

    /

    返回文章
    返回