留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滑坡堰塞坝堆积形态影响因素离散元分析

刘士奇 王环玲 高闯 屈晓

刘士奇, 王环玲, 高闯, 屈晓. 滑坡堰塞坝堆积形态影响因素离散元分析[J]. 地质科技通报, 2022, 41(2): 165-175. doi: 10.19509/j.cnki.dzkq.2022.0042
引用本文: 刘士奇, 王环玲, 高闯, 屈晓. 滑坡堰塞坝堆积形态影响因素离散元分析[J]. 地质科技通报, 2022, 41(2): 165-175. doi: 10.19509/j.cnki.dzkq.2022.0042
Liu Shiqi, Wang Huanling, Gao Chuang, Qu Xiao. Discrete element analysis on influencing factors of deposit morphology of landslide dam[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 165-175. doi: 10.19509/j.cnki.dzkq.2022.0042
Citation: Liu Shiqi, Wang Huanling, Gao Chuang, Qu Xiao. Discrete element analysis on influencing factors of deposit morphology of landslide dam[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 165-175. doi: 10.19509/j.cnki.dzkq.2022.0042

滑坡堰塞坝堆积形态影响因素离散元分析

doi: 10.19509/j.cnki.dzkq.2022.0042
基金项目: 

国家重点研发计划项目 2018YFC1508501

江苏省研究生科研与实践创新计划项目 KYCX20_0434

中央高校基本科研业务费专项资金项目 B200203079

详细信息
    作者简介:

    刘士奇(1992—), 男, 现正攻读岩土工程专业博士学位, 主要从事岩石力学与工程地质方面的研究工作。E-mail: sddxlsq@126.com

    通讯作者:

    王环玲(1976—), 女, 教授, 主要从事岩石力学与工程防灾减灾的研究工作。E-mail: wanghuanling@hhu.edu.cn

  • 中图分类号: P642.22

Discrete element analysis on influencing factors of deposit morphology of landslide dam

  • 摘要: 滑坡是形成堰塞坝的最主要原因,在地震、降雨、冰雪融水等作用下均可形成滑坡堰塞坝,而滑坡堰塞坝的堆积形态、范围等对评价堰塞坝的稳定性有着重要的影响。通过离散元方法(DEM),系统分析了三维条件下滑动距离、滑面出口宽度、滑面倾角、河床倾角、河谷形状对堰塞坝堆积形态的影响。研究结果表明:滑动距离和出口宽度对坝体高度影响最大;随出口宽度和坡面倾角的增加,坝长和坝宽分别呈线性增大和减小趋势;滑动距离可以有效控制滑体速度,进而影响堆积角大小;河床倾角主要影响坝长;对坝高、坝长、上下游绝对倾角正切值和堆积角正切值进行回归分析表明,数学模型契合程度高,说明其形态可以预测;引入2个参数λχ,对堰塞坝堆积特征进行了描述;河谷形状的影响主要体现在随着河谷底部宽度的增大,滑体爬高爬坡能力增强。研究成果对根据实际地形预测滑坡堰塞坝堆积形态进而评估坝体的安全性具有重要意义,可以为进一步开展堰塞湖溃决研究提供一定的参考。

     

  • 图 1  红石岩堰塞坝现场图

    Figure 1.  Map of landslide dam

    图 2  红石岩堰塞坝散落块石

    Figure 2.  Blockstone of the Hongshiyanlandslide dam

    图 3  室内试验取样点

    Figure 3.  Sampling location for the indoor test

    图 4  PFC3D中数值模拟试验模型构建

    Figure 4.  Numerical model construction in PFC3D

    图 5  坝体形态结构示意图(a, b, c中代号说明见正文)

    Figure 5.  Morphological structure sketch of the landslide dam

    图 6  转动阻抗线性接触模型

    Figure 6.  Rolling resistance linear contact model

    图 7  颗粒级配

    Figure 7.  Grading curve of the sample

    图 8  堆积角标定过程

    Figure 8.  Calibration process of the deposit angle

    图 9  不同滑动距离堰塞坝堆积形态

    Figure 9.  Landslide dam deposit shape under different sliding distances

    图 10  不同出口宽度下坝体堆积形态

    Figure 10.  Deposit shape under different outlet widths

    图 11  不同滑面倾角下坝体堆积形态

    Figure 11.  Deposit shape under different sliding surface angles

    图 12  不同河床倾角下坝体堆积形态

    Figure 12.  Deposit shape under different river bed angles

    图 13  堰塞坝上下游绝对倾角统计

    Figure 13.  Statistics of absolution inclination angles of upstream and downstream

    图 14  不同指标影响因素分析统计图

    Figure 14.  Statistics of different indexes influencing factors

    图 15  滑面倾角对χψλ的影响

    Figure 15.  Influence of the sliding surface angle on χψ and λ

    图 16  河床倾角对χψλ的影响

    Figure 16.  Influence of river bed angle on χψ and λ

    图 17  不同河谷形状时堆积形态

    Figure 17.  Deposit shape under different valley shapes

    图 18  “U”形河谷顺河向断面堆积形态

    Figure 18.  Deposit shape of a "U"-shaped valley along the river

    表  1  试验方案

    Table  1.   Experimental schemes

    组别 编号 滑动距离L/m 出口宽度a/m 坡面倾角η/(°) 河床倾角θ/(°) 河谷形状
    A 1 2 1.0 30 0 “V”形
    2 3 1.0 30 0 “V”形
    3 4 1.0 30 0 “V”形
    B 4 2 0.8 30 0 “V”形
    2 1.0 30 0 “V”形
    5 2 1.2 30 0 “V”形
    C 2 1.0 30 0 “V”形
    6 2 1.0 45 0 “V”形
    7 2 1.0 60 0 “V”形
    D 8 2 1.0 30 4 “V”形
    9 2 1.0 30 8 “V”形
    10 2 1.0 30 12 “V”形
    E 2 1.0 30 0 “V”形
    2 1.0 30 0 “U”形
    2 1.0 30 0 “T”形
    下载: 导出CSV

    表  2  细观参数统计

    Table  2.   Statistics list of microscopic parameters

    最小颗粒半径/cm 1.0 摩擦系数 0.4
    颗粒粒径比 1.66 阻抗摩擦系数 0.6
    颗粒密度/(kg·m-3) 2 650 法向阻尼 0.2
    孔隙率 0.5 切向阻尼 0.2
    接触法向刚度/MPa 50 接触切向刚度/MPa 50
    下载: 导出CSV

    表  3  参数指标统计表

    Table  3.   Statistics list of parameter indexes

    编号 1 2 3 4 5 6 7 8 9 10
    Ld/m 0.91 0.92 0.97 0.82 1.02 0.98 1.13 1.01 1.20 1.29
    Ld/m 0.65 0.65 0.70 0.57 0.76 0.78 0.98 0.75 0.97 1.13
    Lb/m 1.86 1.82 1.89 1.66 1.97 1.94 2.25 1.95 2.01 2.04
    α′/(°) 19.43 17.78 18.12 21.36 16.65 16.30 12.54 21.33 23.58 24.02
    β′/(°) 19.29 16.91 17.69 21.29 14.98 16.58 13.86 15.42 11.91 10.47
    λ 0.35 0.36 0.37 0.34 0.39 0.40 0.44 0.38 0.48 0.55
    ψ 0.65 0.58 0.60 0.71 0.53 0.55 0.44 0.61 0.59 0.57
    下载: 导出CSV
  • [1] 严祖文, 魏迎奇, 蔡红. 堰塞坝形成机理及稳定性分析[J]. 中国地质灾害与防治学报, 2009, 20(4): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200904014.htm

    Yan Z W, Wei Y Q, Cai H. Formation mechanism and stability analysis of barrier dam[J]. The Chinese Journal of Geological Hazard and Control, 2009, 20(4): 59-63(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200904014.htm
    [2] Costa J E, Schuster R L. The formation and failure of natural dams[J]. Geological Society of America Bulletin, 1988, 100 (7): 1054-1068. doi: 10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2
    [3] 郑鸿超, 石振明, 彭铭, 等. 崩滑碎屑体堵江成坝研究综述与展望[J]. 工程科学与技术, 2020, 52(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202002003.htm

    Zheng H C, Shi Z M, Peng M, et al. Review and prospect of the formation mechanism of landslide dams caused by landslide and avalanche debris[J]. Advanced Engineering Sciences, 2020, 52(2): 1-10(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202002003.htm
    [4] 石振明, 郑鸿超, 彭铭, 等. 考虑不同泄流槽方案的堰塞坝溃决机理分析: 以唐家山堰塞坝为例[J]. 工程地质学报, 2016, 24(5): 741-751. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201605003.htm

    Shi Z M, Zheng H C, Peng M, et al. Breaching mechanism analysis of landslide dams considering different spillway schemes: A case study of Tangjiashan landslide dam[J]. Journal of Engineering Geology, 2016, 24(5): 741-751(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201605003.htm
    [5] Fan X M, van Westen C J, Xu Q, et al. Analysis of landslide dams induced by the 2008 Wenchuan Earthquake[J]. Journal of Asian Earth Sciences, 2012, 57: 25-37. doi: 10.1016/j.jseaes.2012.06.002
    [6] Xu Q, Fan X M, Huang R Q, et al. Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, Southwest China[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(3): 373-386. doi: 10.1007/s10064-009-0214-1
    [7] 张宗亮, 张天明, 杨再宏, 等. 牛栏江红石岩堰塞湖整治工程[J]. 水力发电, 2016, 42(9): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201609024.htm

    Zhang Z L, Zhang T M, Yang Z H, et al. Remediation project of Hongshiyan Dammed Lake in Niulan River[J]. Water Power, 2016, 42(9): 83-86(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201609024.htm
    [8] Shi Z, Xiong X, Peng M, et al. Risk assessment and mitigation for the Hongshiyan landslide dam triggered by the 2014 Ludian earthquake in Yunnan, China[J]. Landslides, 2017, 14(1): 269-285. doi: 10.1007/s10346-016-0699-1
    [9] Fan X M, Xu Q, Alonso-Rodriguez A, et al. Successive landsliding and damming of the Jinsha River in eastern Tibet, China: Prime investigation, early warning, and emergency response[J]. Landslides, 2019, 16(5): 1003-1020. doi: 10.1007/s10346-019-01159-x
    [10] 钟启明, 陈生水, 单熠博. 金沙江白格堰塞湖溃决过程数值模拟[J]. 工程科学与技术, 2020, 52(2): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202002004.htm

    Zhong Q M, Chen S S, Shan Y B. Numerical modeling of breaching process of Baige dammed lake on Jinsha River[J]. Advanced Engineering Sciences, 2020, 52(2): 29-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202002004.htm
    [11] 黄健, 贺子城, 黄祥, 等. 基于地貌特征的滑坡堰塞坝形成敏感性研究[J]. 地质科技通报, 2021, 40(5): 253-262. doi: 10.19509/j.cnki.dzkq.2021.0040

    Huang J, He Z C, Huang X, et al. Formation sensitivity of landslide dam based on geomorphic characteristic[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 253-262(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0040
    [12] 彭双麒, 柯灵, 郑体, 等. 基于图像识别的碎屑流颗粒分布特征及碎屑流与房屋相互作用探究[J]. 地质科技通报, 2021, 40(6): 226-235. doi: 10.19509/j.cnki.dzkq.2021.0622

    Peng S Q, Ke L, Zheng T, et al. Particle distribution characteristics of rock avalanche and the interaction between rock avalanche and houses based on image recognition[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 226-235(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0622
    [13] Stefanelli C T, Segoni S, Casagli N, et al. Geomorphic indexing of landslide dams evolution[J]. Engineering Geology, 2016, 208: 1-10. doi: 10.1016/j.enggeo.2016.04.024
    [14] Yin Y P, Wang F, Sun P. Landslide hazards triggered by the 2008 Wenchuan Earthquake, Sichuan, China[J]. Landslides, 2009, 6(2): 139-152. doi: 10.1007/s10346-009-0148-5
    [15] Casagli N, Ermini L, Rosati G. Determining grain size distribution of the material composing landslide dams in the northern Apennines: Sampling and processing methods[J]. Engineering Geology, 2003, 69(1): 83-97.
    [16] 葛云峰, 李信杰, 杜彬, 等. 多功能高速远程滑坡运动堆积过程物理模型试验装置设计与应用[J]. 地质科技通报, 2020, 39(1): 86-94. doi: 10.19509/j.cnki.dzkq.2020.0110

    Ge Y F, Li X J, Du B, et al. Design and application of multifunctional physical model test device for movement and accumulation process of rapid long-runout landslide[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 86-94(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0110
    [17] 郝明辉, 许强, 杨磊, 等. 滑坡-碎屑流物理模型试验及运动机制探讨[J]. 岩土力学, 2014, 35(增刊1): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S1018.htm

    Hao M H, Xu Q, Yang L, et al. Physical modeling and movement mechanism of landslide-debris avalanches[J]. Rock and Soil Mechanics, 2014, 35(S1): 127-132(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S1018.htm
    [18] 郝明辉, 许强, 杨兴国, 等. 高速滑坡-碎屑流颗粒反序试验及其成因机制探讨[J]. 岩石力学与工程学报, 2015, 34(3): 472-479. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503005.htm

    Hao M H, Xu Q, Yang X G, et al. Physical modeling tests on inverse grading of particles in high speed landslide debris[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 472-479(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503005.htm
    [19] 王玉峰, 许强, 程谦恭, 等. 复杂三维地形条件下滑坡-碎屑流运动与堆积特征物理模拟实验研究[J]. 岩石力学与工程学报, 2016, 35(9): 1776-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609007.htm

    Wang Y F, Xu Q, Cheng Q G, et al. Experimental study on the propagation and deposit features of rock avalanche along 3D complex topography[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1776-1791(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609007.htm
    [20] Wang Y F, Xu Q, Cheng Q G, et al. Spreading and deposit characteristics of a rapid dry granular avalanche across 3D topography: Experimental study[J]. Rock Mechanics and Rock Engineering, 2016, 49(11): 4349-4370. doi: 10.1007/s00603-016-1052-7
    [21] Liao H M, Yang X G, Lu G D, et al. Experimental study on the river blockage and landslide dam formation induced by rock slides[J]. Engineering Geology, 2019, 261: 105269. doi: 10.1016/j.enggeo.2019.105269
    [22] Wu H, Nian T K, Chen G Q, et al. Laboratory-scale investigation of the 3-D geometry of landslide dams in a U shaped valley[J]. Engineering Geology, 2020, 265: 105428. doi: 10.1016/j.enggeo.2019.105428
    [23] 闫欣宜, 胡新丽, 付茹. 橡胶纤维-砂混合料力学特性的离散元三轴试验研究[J]. 地质科技通报, 2020, 39(2): 168-174. doi: 10.19509/j.cnki.dzkq.2020.0218

    Yan X Y, Hu X L, Fu R. Triaxial shear test of mechanical characteristic on rubber fiber-sand mixtures based on particle flow code simulation[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 168-174(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0218
    [24] 王洋海. 基于DEM方法的堰塞体形成过程的数值研究[D]. 西宁: 青海大学, 2019.

    Wang Y H. Numerical study on formation of landslide dam by DEM[D]. Xining: Qinghai University, 2019(in Chinese with English abstract).
    [25] 罗伟韬. 基于离散元方法的堰塞体堆积性质研究[D]. 北京: 清华大学, 2014.

    Luo W T. Numerical investigation of internal properties in landslide dam by DEM[D]. Beijing: Tsinghua University, 2014(in Chinese with English abstract).
    [26] 赵高文, 乔建平, 姜元俊, 等. 基于DEM方法的滑坡堰塞坝几何特征分析[J]. 人民黄河, 2019, 41(5): 9-15, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201905004.htm

    Zhao G W, Qiao J P, Jiang Y J, et al. Geometric characteristics analysis of landslide dam based on the discrete element method[J]. Yellow River, 2019, 41(5): 9-15, 22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201905004.htm
    [27] Zhao G W, Jiang Y, Qiao J, et al. Numerical and experimental study on the formation mode of a landslide dam and its influence on dam breaching[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(4): 2519-2533. doi: 10.1007/s10064-018-1255-0
    [28] Zhou Y Y, Shi Z M, Zhang Q Z, et al. 3D DEM investigation on the morphology and structure of landslide dams formed by dry granular flows[J]. Engineering Geology, 2019, 258: 105151. doi: 10.1016/j.enggeo.2019.105151
    [29] Zhou Y Y, Shi Z M, Zhang Q Z, et al. Damming process and characteristics of landslide-debris avalanches[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 252-261. doi: 10.1016/j.soildyn.2019.03.014
    [30] Zhou J W, Cui P, Fang H. Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan Earthquake, China[J]. Landslides, 2013, 10(3): 331-342. doi: 10.1007/s10346-013-0387-3
    [31] Zhao T, Dai F, Xu N. Coupled DEM-CFD investigation on the formation of landslide dams in narrow rivers[J]. Landslides, 2017, 14(1): 189-201. doi: 10.1007/s10346-015-0675-1
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  458
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02

目录

    /

    返回文章
    返回