留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华南与花岗岩有关的稀有金属矿床和钨锡矿床的时空分布规律及其成因联系

吴堑虹 周厚祥 刘飚 孔华 裴进云 覃毅学 宗琦 吴锟言 汤钰御

吴堑虹, 周厚祥, 刘飚, 孔华, 裴进云, 覃毅学, 宗琦, 吴锟言, 汤钰御. 华南与花岗岩有关的稀有金属矿床和钨锡矿床的时空分布规律及其成因联系[J]. 地质科技通报, 2023, 42(1): 78-88. doi: 10.19509/j.cnki.dzkq.2022.0047
引用本文: 吴堑虹, 周厚祥, 刘飚, 孔华, 裴进云, 覃毅学, 宗琦, 吴锟言, 汤钰御. 华南与花岗岩有关的稀有金属矿床和钨锡矿床的时空分布规律及其成因联系[J]. 地质科技通报, 2023, 42(1): 78-88. doi: 10.19509/j.cnki.dzkq.2022.0047
Wu Qianhong, Zhou Houxiang, Liu Biao, Kong Hua, Pei Jinyun, Qin Yixue, Zong Qi, Wu Kunyan, Tang Yuyu. Spatio-temporal distribution of granite-related rare metal deposits and W-Sn deposits in South China and their genetic relationship[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 78-88. doi: 10.19509/j.cnki.dzkq.2022.0047
Citation: Wu Qianhong, Zhou Houxiang, Liu Biao, Kong Hua, Pei Jinyun, Qin Yixue, Zong Qi, Wu Kunyan, Tang Yuyu. Spatio-temporal distribution of granite-related rare metal deposits and W-Sn deposits in South China and their genetic relationship[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 78-88. doi: 10.19509/j.cnki.dzkq.2022.0047

华南与花岗岩有关的稀有金属矿床和钨锡矿床的时空分布规律及其成因联系

doi: 10.19509/j.cnki.dzkq.2022.0047
基金项目: 

国家重点研发计划 2018YFC0603902

湖南省自然资源厅项目 20190604

湖南省自然科学青年基金项目 2021JJ40722

详细信息
    作者简介:

    吴堑虹(1957—  ), 教授, 主要从事区域成矿规律研究工作。E-mail: qhwu@csu.edu.cn

    通讯作者:

    刘飚(1989—  ), 讲师, 主要从事矿床学方面研究工作。E-mail: biaoliu@csu.edu.cn

  • 中图分类号: P618.4

Spatio-temporal distribution of granite-related rare metal deposits and W-Sn deposits in South China and their genetic relationship

  • 摘要:

    华南是我国战略性矿产钨锡的主产地,且与花岗岩有关的钨锡矿床附近常发育Li、Rb、Be、Nb、Ta等稀有金属矿床,但对这两类矿床的成因联系并不清楚。通过收集整理华南与花岗岩有关的稀有金属矿床和钨锡矿床的研究资料,对稀有金属矿和钨锡矿的成因关系进行初步分析,认识到这两类矿床具有区域-矿田-矿床-矿物多尺度的空间相关性,成矿时代、成矿物质来源及成矿作用相近性,且成矿主要与燕山期高分异花岗岩有关。两者之间“偶极”式分布样式为利用华南极为丰富的钨锡矿床勘探及研究成果寻找稀有金属矿床提供了依据。

     

  • 图 1  典型矿床稀有金属矿-钨锡矿相对位置示意图

    a.湖南香花岭地区[5];b.江西大湖塘矿集区[6];c.湖南邓阜仙地区[7]

    Figure 1.  Schematic diagram of the relative position of rare metal ore tungsten tin ore in a typical deposit

    图 2  大吉山矿田中稀有金属矿与钨锡矿分布示意图[14]

    Figure 2.  Schematic diagram of the relative position of rare metals and W-Sn deposits in a typical ore field

    图 3  铌钽矿物与钨、锡矿物中相应元素分布图[6, 16, 18]

    Figure 3.  Distribution diagram of elements in Nb-Ta and W-Sn minerals

    图 4  华南地区含稀有金属与钨锡花岗岩岩石化学特征变化

    Figure 4.  Petrochemical changes in rare metal and W-Sn granites in South China

    图 5  华南地区稀有金属与钨锡矿床综合成矿模式

    Figure 5.  Metallogenic model of rare metal and W-Sn deposits in South China

  • [1] 李建康, 李鹏, 王登红, 等. 中国铌钽矿成矿规律[J]. 科学通报, 2019, 64(15): 1545-1566. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915002.htm

    Li J K, Li P, Wang D H, et al. A review of niobium and tantalum metallogenic regularity in China[J]. Chinese Science Bulletin, 2019, 64(15): 1545-1566(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915002.htm
    [2] 李艳军, 魏俊浩, 张文胜, 等. 幕阜山复式岩基西北缘新发现微斜长石伟晶岩型铌钽矿化[J]. 地质科技通报, 2021, 40(2): 13-23. doi: 10.19509/j.cnki.dzkq.2021.0219

    Li Y J, Wei J H, Zhang W S, et al. New discovery of microcline pegmatite type Nb Ta mineralization in the northwest margin ofMufushan compound batholith[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 13-23(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0219
    [3] 李胜虎. 华南典型花岗岩型稀有金属矿床的成矿机制与找矿模式研究[D]. 北京: 中国地质大学(北京), 2015.

    Li S H. Metallogenic mechanism and prospecting model of typical granite-type rare metal deposits in South China[D]. Beijing: China University of Geosciences(Beijing), 2015(in Chinese with English abstract).
    [4] 毛景文, 袁顺达, 谢桂青, 等. 21世纪以来中国关键金属矿产找矿勘查与研究新进展[J]. 矿床地质, 2019, 38(5): 935-969. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905001.htm

    Mao J W, Yuan S D, Xie G Q, et al. New advances on metallogenic studies and exploration on critical minerals of China in the 21st century[J]. Mineral Deposits, 2019, 38(5): 935-969(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905001.htm
    [5] 王正军. 湖南癞子岭厚层状云英岩成因及其成矿作用研究[D]. 南京: 南京大学, 2018.

    Wang Z J. Petrogenesis and mineralization of the Laiziling thick layered greisen, Hunan province[D]. Nanjing: Nanjing University, 2018(in Chinese with English abstract).
    [6] 朱金初, 饶冰, 熊小林, 等. 富锂氟含稀有矿化花岗质岩石的对比和成因思考[J]. 地球化学, 2002, 31(2): 141-152. doi: 10.3321/j.issn:0379-1726.2002.02.005

    Zhu J C, Rao B, Xiong X L, et al. Comparison and genetic interpretation of Li-F rich, rare-metal bearing granitic rocks[J]. Geochimica, 2002, 31(2): 141-152(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2002.02.005
    [7] 蒋少涌, 赵葵东, 姜海, 等. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展[J]. 科学通报, 2020, 65(33): 3730-3745. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033009.htm

    Jiang S Y, Zhao K D, Jiang H, et al. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: An overview[J]. Chinese Science Bulletin, 2020, 65(33): 3730-3745(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033009.htm
    [8] 章崇真, 李吉涛, 黄定堂, 等. 江西灵山花岗岩的演化和成矿[J]. 大地构造与成矿学, 1985, 9(4): 323-340. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK198504002.htm

    Zhang C Z, Li J T, Huang D T, et al. The evolution and mineralization of Lingshan granite in Jiangxi[J]. Geotectonica et Metallogenia, 1985, 9(4): 323-340(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK198504002.htm
    [9] 吴剑. 广东省粤北一六矿田成矿规律浅析[J]. 资源环境与工程, 2015, 29(4): 412-417. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201504012.htm

    Wu J. Discussion on metallogenic regularity of Yiliu Ore field in North Guangdong[J]. Resources Environment & Engineering, 2015, 29(4): 412-417(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201504012.htm
    [10] 王笃昭. 南岭地区与花岗岩有关的稀土、稀有元素成矿作用演化与成矿模式[J]. 矿床地质, 1984, 3(1): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198401009.htm

    Wang D Z. The mineralization processes and minerogenetic model of the rare earth-rare metal deposits related to the granitoids of Nanling region[J]. Mineral Deposits, 1984, 3(1): 58-66(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198401009.htm
    [11] 夏宏远, 梁书艺. 南岭某些钨锡(钽铌)矿床的原生分带及成因系列研究[J]. 矿物岩石, 1986, 7(1): 2, 1-9, 182. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198601000.htm

    Xia H Y, Liang S Y. Primary zoning and genetic series of W, Sn(Ta, Nb) ore deposits in Nanling[J]. Mineralogy and Petrology, 1986, 7(1): 2, 1-9, 182(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198601000.htm
    [12] 肖惠良, 陈乐柱, 鲍晓明, 等. 广东始兴良源铌钽铷钨多金属矿床的发现及其意义[J]. 资源调查与环境, 2012, 33(4) : 229-237. doi: 10.3969/j.issn.1671-4814.2012.04.005

    Xiao H L, Chen L Z, Bao X M, et al. Discovery of Liangyuan Nb-Ta-Rb-W-polymetallic deposit in Shixing county, Guangdong Province and its significance[J]. Resources Survey and Environment, 2012, 33(4): 229-237(in Chinese with English abstract). doi: 10.3969/j.issn.1671-4814.2012.04.005
    [13] 朱志成, 王建文, 俞寒飞. 江西省横峰县松树岗稀有金属矿床成矿模式探讨[J]. 世界有色金属, 2018, 29(15): 95-97. doi: 10.3969/j.issn.1002-5065.2018.15.058

    Zhu Z C, Wang J W, Yu H F. Discussion on the metallogenic model of the pine tree granite rare metal deposit in Hengfeng county Jiangxi province[J]. World Nonferrous Metals, 2018, 29(15): 95-97(in Chinese with English abstract). doi: 10.3969/j.issn.1002-5065.2018.15.058
    [14] 曹钟清. 大吉山钽铌钨矿床地质特征及找矿模型[J]. 地质与勘探, 2004, 40(6): 34-37. doi: 10.3969/j.issn.0495-5331.2004.06.008

    Cao Z Q. Geological characteristics and prospecting model of Dajishan niobium-tantalum-tungsten deposit[J]. Geology and Exploration, 2004, 40(6): 34-37(in Chinese with English abstract). doi: 10.3969/j.issn.0495-5331.2004.06.008
    [15] 蔡报元, 靳鑫, 张云蛟. 葛源松树岗铌钽矿分布规律及与灵山岩体的关系[J]. 西部探矿工程, 2017, 29(9): 171-175. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201709056.htm

    Cai B Y, Jin X, Zhang Y J. Distribution of niobium-tantalum deposit in songshugang, Geyuan and its relationship with Lingshan pluton[J]. West-China Exploration Engineering, 2017, 29(9): 171-175(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201709056.htm
    [16] 李启津. 对414含钽花岗岩矿床的再认识[J]. 矿产与地质, 1986, 6(2): 12-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD198602001.htm

    Li Q J. Recognition of 414 Tantalum-bearing granite deposit[J]. Mineral Resources and Geology, 1986, 6(2): 12-24(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD198602001.htm
    [17] 刘莹, 谢磊, 王汝成, 等. 赣北大湖塘矿床的含铌钽与含钨花岗岩成岩成矿特征对比研究[J]. 地质学报, 2018, 92(10): 2120-2137. doi: 10.3969/j.issn.0001-5717.2018.10.012

    Liu Y, Xie L, Wang R C, et al. Comparative study of petrogenesis and mineralization characteristics of Nb-Ta-bearing and W-bearing granite in the Dahutang deposit, northern Jiangxi province[J]. Acta Geologica Sinica, 2018, 92(10): 2120-2137(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.10.012
    [18] 王正军. 湖南癞子岭厚层状云英岩成因及其成矿作用研究[D]. 南京: 南京大学, 2018.

    Wnag Z J. Petrogenesis and mineralization of the Laiziling thick layered greisen, Hunan province[D]. Nanjing: Nanjing University, 2018(in Chinese with English abstract).
    [19] 孙颖超, 陈郑辉, 赵国春, 等. 湖南邓阜仙钨铌钽矿花岗细晶岩接触带白云母40Ar/39Ar年龄及其地质意义[J]. 地质通报, 2017, 36(增刊1): 466-476. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2017Z1028.htm

    Sun Y C, Chen Z H, Zhao G C, et al. 40Ar/39Ar dating of muscovite from the contact zone of granite-aplites in the Dengfuxian W-Nb-Ta deposit and its geological significance[J]. Geological Bulletin of China, 2017, 36(S1): 466-476(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2017Z1028.htm
    [20] 陈骏, 陆建军, 陈卫锋, 等. 南岭地区钨锡铌钽花岗岩及其成矿作用[J]. 高校地质学报, 2008, 14(4): 459-473. doi: 10.3969/j.issn.1006-7493.2008.04.001

    Chen J, Lu J J, Chen W F, et al. W-Sn-Nb-Ta-bearing granites in the Nanling Range and their relationship to metallogenesis[J]. Geological Journal of China Universities, 2008, 14(4): 459-473(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.04.001
    [21] Xiong Y Q, Shao Y J, Cheng Y B, et al. Discrete Jurassic and Cretaceous Mineralization Events at the Xiangdong W(-Sn) Deposit, Nanling Range, South China[J]. Economic Geology, 2020, 115(2): 385-413. doi: 10.5382/econgeo.4704
    [22] Che X D, Wang R C, Wu F Y, et al. Episodic Nb-Tamineralisation in South China: Constraints from in situ LA-ICP-MS columbite-tantalite U-Pb dating[J]. Ore Geology Reviews, 2019, 105: 71-85. doi: 10.1016/j.oregeorev.2018.11.023
    [23] 毛景文, 谢桂青, 郭春丽, 等. 华南地区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地质学报, 2008, 14(4): 510-526. doi: 10.3969/j.issn.1006-7493.2008.04.005

    Mao J W, Xie G Q, Guo C L, et al. Spatialtemporal distribution of Mesozoic ore deposits in south china and their metalogenic settings[J]. Geological Journal of China Universities, 2008, 14(4): 510-526(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.04.005
    [24] Mao Z H, Liu J J, Mao J W, et al. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, and mineralization[J]. Gondwana Research, 2015, 28(2): 816-836. doi: 10.1016/j.gr.2014.07.005
    [25] Song W L, Yao J M, Chen H Y, et al. A 20m. y. long-lived successive mineralization in the giant Dahutang W-Cu-Mo deposit, South China[J]. Ore Geology Reviews, 2018, 95: 401-407. doi: 10.1016/j.oregeorev.2018.02.033
    [26] Li X F, Yi X K, Cheng H, et al. Zircon U-Pb, molybdenite Re-Os and muscovite Ar-Ar geochronology of the Yashan W-Mo and Xiatongling W-Mo-Be deposits: Insights for the duration and cooling history of magmatism and mineralization in the Wugongshan district, Jiangxi, South China[J]. Ore Geology Reviews, 2018, 102: 1-17. doi: 10.1016/j.oregeorev.2018.08.033
    [27] 袁顺达. 南岭钨锡成矿作用几个关键科学问题及其对区域找矿勘查的启示[J]. 矿物岩石地球化学通报, 2017, 36(5): 736-749, 696. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201705006.htm

    Yuan S D. Several crucial scientific issues related to the W-Snmetallogenesis in the Nanling range and their implications for regional exploration: A review[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(5): 736-749, 696(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201705006.htm
    [28] 郭钡尔, 赵葵东, 蒋少涌, 等. 湘南癞子岭稀有金属花岗岩与431岩脉的成因联系与锡铌钽矿化机制[J]. 矿物学报, 2019, 39(增刊1): 150. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-KWXB201912001086.htm

    Guo B E, Zhao K D, Jiang S Y, et al. Genetic relationship andsn-nb-ta mineralization mechanism of rare metal granites and 431 dikes in Laiziling, southern Hunan[J]//Acta Mineralogica Sinica, 2019, 38(S1)150(in Chinese with English abstract). https://cpfd.cnki.com.cn/Article/CPFDTOTAL-KWXB201912001086.htm
    [29] 李杭, 洪涛, 杨智全, 等. 稀有金属花岗伟晶岩锆石、锡石与铌钽铁矿U-Pb和白云母40Ar/39Ar测年对比研究: 以阿尔金中段吐格曼北锂铍矿床为例[J]. 岩石学报, 2020, 36(9): 2869-2892. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202009017.htm

    Li H, Hong T, Yang Z Q, et al. Comparative studying on zircon, cassiterite and coltan U-Pb dating and40Ar/39Ar dating of muscovite rare-metal granitic pegmatites: A case study of the northern Tugeman lithium-beryllium deposit in the middle of Altyn Tagh[J]. Acta Petrologica Sinica, 2020, 36(9): 2869-2892(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202009017.htm
    [30] 王汝成, 车旭东, 邬斌, 等. 中国铌钽锆铪资源[J]. 科学通报, 2020, 65(33): 3763-3777. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033011.htm

    Wang R C, Che X D, Wu B, et al. Critical mineral resources of Nb, Ta, Zr, and Hf in China[J]. Chinese Science Bulletin, 2020, 65(33): 3763-3777(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033011.htm
    [31] 羊士赣, 王瑞湖. 南岭西段锡矿类型与找矿前景[J]. 矿产与地质, 2004, 18(3): 207-211. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200403003.htm

    Yang S G, Wang R H. Tin deposit type and its exploration prospect in western Nanling[J]. Mineral Resources and Geology, 2004, 18(3): 207-211(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200403003.htm
    [32] 朱金初, 王汝成, 陆建军, 等. 湘南癞子岭花岗岩体分异演化和成岩成矿[J]. 高校地质学报, 2011, 17(3): 381-392. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201103005.htm

    Zhu J C, Wang R C, Lu J J, et al. Fractionation, evolution, petrogenesis and mineralization of Laiziling Granite Pluton, southern Hunan Province[J]. Geological Journal of China Universities, 2011, 17(3): 381-392(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201103005.htm
    [33] 杜方权. 癞子岭岩体构造地球化学及成矿特征[J]. 地质与勘探, 1988, 32(10): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198810008.htm

    Du F Q. Tectono-geochemistry and metallogenic features of theLaiziling rock mass[J]. Geology and Exploration, 1988, 32(10): 44-49(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198810008.htm
    [34] 谭运金. 关于"岩体型钨矿"的意见[J]. 地质论评, 1983, 29(6): 563-565. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198306009.htm

    Tan Y J. A discussion of body-hosted tungsten deposits[J]. Geological Review, 1983, 29(6): 563-565(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198306009.htm
    [35] Zhou M F, Gao J F, Zhao Z, et al. Introduction to the special issue of Mesozoic W-Sn deposits in South China[J]. Ore Geology Reviews, 2018, 101: 432-436.
    [36] 邱瑞照, 周肃, 常海亮, 等. 超临界流体在花岗岩成岩成矿过程中的作用: 以香花岭花岗岩型铌钽矿床(430)为例[J]. 地质科技情报, 1998, 17(增刊1): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S1.006.htm

    Qiu R Z, Zhou S, Chang H L, et al. Role of the supercritical fluid in the process of granitic rock forming and mineralization: taking the granitic Nb, Ta deposit in Xianghualing area as an example[J]. Geological Science and Technology Information, 1998, 17(S1): 3-5(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S1.006.htm
    [37] Cěrný P, Blevin P L. Granite-related ore deposits[J]. Soc. Econ. Geol., 2005, 100: 337-370. http://www.researchgate.net/publication/336543175_Granite-Related_Ore_Deposits
    [38] 李建康, 张德会, 王登红, 等. 富氟花岗岩浆液态不混溶作用及其成岩成矿效应[J]. 地质论评, 2008, 54(2): 175-183. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200802005.htm

    Li J K, Zhang D H, Wang D H, et al. Liquid immiscibility of fluorine-rich granite magma and its diagenesis and metallogeny[J]. Geological Review, 2008, 54(2): 175-183(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200802005.htm
    [39] 胡受奚, 孙志明, 严正富, 等. 与交代蚀变花岗岩有成因联系的钨、锡和稀有亲花岗岩元素矿床有关的一种重要的成矿模式[C]//徐克勤, 涂光炽. 花岗岩地质和成矿关系. 国际花岗岩地质与成矿关系讨论会论文集. 南京: 江苏科学技术出版杜, 1986: 346-358.

    Hu S X, Sun Z M, Yan Z F, et al. An important metallogenic model related to the ore deposits of Tungsten, Tin and rare proto-granitoid elements related to metasomatic altered granites[C]//Xu K Q, Tu G Z, Relationship between granite geology and mineralization. Proceedings of the International Symposium on the relationship between granite geology and mineralization. Nanjing: Phoenix Science Press, 1986: 346-358(in Chinese).
    [40] Raimbault L, Cuney M, Azencott C, et al. Geochemical evidence for a mult istage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central[J]. Economic Geology, 1995, 90: 548-576.
    [41] 张辉, 唐勇, 刘丛强, 等. 花岗岩+P2O5-H2O体系中W、Sn、Be、Nb、Ta在流体/熔体间分配的实验研究[J]. 矿物岩石地球化学通报, 2006, 25(增刊1): 209-212. https://cdmd.cnki.com.cn/Article/CDMD-10370-1012503167.htm

    Zhang H, Tang Y, Liu C Q, et al. Study on distribution of W, Sn, Be, Nb and Ta between fluids/melts in Granite+P2O5-H2O system[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(S1): 209-212(in Chinese with English abstract). https://cdmd.cnki.com.cn/Article/CDMD-10370-1012503167.htm
    [42] 管申进, 张辉, 唐勇, 等. 100 MPa、800℃下Mo和W在流体/花岗质熔体相间分配的实验研究[J]. 地球化学, 2011, 40(6): 516-524. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201106001.htm

    Guan S J, Zhang H, Tang Y, et al. An experimental study on the partitioning of Molybdenum and Tungsten between granitic melt and coexisting aqueous fluid at 100 MPa and 800℃[J]. Geochimica, 2011, 40(6): 516-524(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201106001.htm
    [43] 唐勇, 张辉, 刘丛强, 等. 100 MPa、850℃和800℃条件下锡在流体与富磷过铝质熔体相间分配的实验研究[J]. 地球化学, 2010, 39(2): 184-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201002014.htm

    Tang Y, Zhang H, Liu C Q, et al. Experimental study on Sn partitioning between phosphorus-rich peraluminous melt and coexisting aqueous fluid[J]. Geochimica, 2010, 39(2): 184-190(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201002014.htm
    [44] 彭省临, 陈子龙. 钨锡在花岗质硅酸盐熔体和共存含水流体间的分配实验研究[J]. 中南矿冶学院学报, 1993, 24(4): 443-447. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD199304001.htm

    Peng S L, Chen Z L, Experimental study on the partitioning of W and Sn between granitic silicate melts and aqueous fluids[J]. Journal of Central-South Institute of Mining and Metallurgy, 1993, 24(4): 443-447(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD199304001.htm
    [45] London D, Hervig R L, Morgan G B. Melt-vapor solubilities and elemental partitioning in peraluminous granite pegmatite system: Experimental results with Macusani glass at 200 MPa[J]. Contributions to Mineralogy and Petrology, 1988, 99: 360-373.
    [46] 王成辉, 王登红, 陈晨, 等. 九岭式狮子岭岩体型稀有金属成矿作用研究进展及其找矿意义[J]. 地质学报, 2019, 93(6): 1359-1373. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906015.htm

    Wang C H, Wang D H, Chen C, et al. Progress of research on theShiziling rare metals mineralization from Jiuling-type rock and its significance for prospecting[J]. Acta Geologica Sinica, 2019, 93(6): 1359-1373(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906015.htm
    [47] 王汝成, 朱金初, 张文兰, 等. 南岭地区钨锡花岗岩的成矿矿物学: 概念与实例[J]. 高校地质学报, 2008, 14(4): 485-495. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804005.htm

    Wang R C, Zhu J C, Zhang W L, et al. Ore-forming mineralogy of W-Sn granites in the Nanling Range: Concept and case study[J]. Geological Journal of China Universities, 2008, 14(4): 485-495(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804005.htm
    [48] 李建康. 花岗岩类矿床成矿流体形成过程的原位观测实验[J]. 吉林大学学报: 地球科学版, 2014, 44(2): 518-526. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201402010.htm

    Li J K., In situ observation of separation mechanism of ore-forming fluid from granitic magma in granite-related deposit[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(2): 518-526(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201402010.htm
    [49] Veksler I V, Dorfman A M, Dulski P, et al. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite[J]. Geochimica et Cosmochimica Acta, 2012, 79: 20-40.
    [50] Niels H, Johanna V D, Nathan R, et al. Structural control on the emplacement of contemporaneous Sn-Ta-Nb mineralized LCT pegmatites and Sn bearing quartz veins: Insights from theMusha and Ntunga deposits of the Karagwe-Ankole Belt, Rwanda[J]. Journal of African Earth Sciences, 2017, 134: 24-32.
    [51] 祝新友, 王京彬, 王艳丽, 等. 论石英脉型与矽卡岩型钨矿床成矿流体的差异性[J]. 岩石学报, 2015, 31(4): 941-953. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201504004.htm

    Zhu X Y, Wang J B, Wang Y L, et al. The differences of the ore-forming fluid between the vein-type and skarn type Tungsten deposits[J]. Acta Petrologica Sinica, 2015, 31(4): 941-953(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201504004.htm
    [52] 刘源骏. 花岗岩型稀有金属矿床成矿模式初议[J]. 资源环境与工程, 2016, 30(增刊1): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK2016S1007.htm

    Liu J Y. Preliminary discussion on metallogenic model of granite-type rare metal deposits[J]. Resources Environment & Engineering, 2016, 30(S1): 19-24(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK2016S1007.htm
    [53] Rao C, Wang R C, Hu H, et al. Complex internal textures in oxide minerals from theNanping No. 31 dyke of granitic pegmatite, Fujian province, southeastern China[J]. Canadian Mineralogist, 2009, 47(5): 1195-1212.
    [54] Webster J D, Duffield W A. Extreme halogen abundances in tin-rich magma of the Taylor Creek Rhyolite, New Mexico[J]. Economic Geology, 1994, 89(4): 840-850.
    [55] Bortnikov N S, Aranovich, L Y, Kryazhev, S G, et al. Badzhal tin magmatic-fluid system, far east, Russia: Transition from granite crystallization to hydrothermal ore deposition[J]. Geology of Ore Deposits, 2019, 61(3): 199-224.
    [56] 王艳丽, 祝新友, 傅其斌, 等. 广西栗木钨锡多金属矿床岩体特征及岩浆不混溶证据[J]. 矿物学报, 2011, 31(增刊1): 863-864. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1451.htm

    Wang Y L, Zhu X Y, Fu Q B, et al. characteristics of rock mass and evidence of Silicate liquid immiscibility inLimu Tungsten-Tin polymetallic deposit, Guangxi[J]. Acta Mineralogica Sinica, 2011, 31(S1): 863-864(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1451.htm
    [57] Zhao Z H, Xiong X L, Han X D, et al. Controls on the REE tetrad effect in granites: Evidence from the Qianlishan and Baerzhe Granites, China[J]. Geochemical Journal, 2002, 36(6): 527-543.
    [58] 谢磊, 王汝成, 朱金初, 等. 湘南矿集区长英质岩脉的特征及其成矿、找矿意义[J]. 岩石学报, 2013, 29(12): 4261-4280. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312014.htm

    Xie L, Wang R C, Zhu J C, et al. Felsic dykes in the metallogenic area of southern Hunanp province and their implications for mineralization and exploration[J]. Acta Petrologica Sinica, 2013, 29(12): 4261-4280(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312014.htm
    [59] Zhang Q, Zhang R Q, Gao J F, et al. In-situ LA-ICP-MS trace element analyses of scheelite and wolframite: Constraints on the genesis of veinlet-disseminated and vein-type tungsten deposits, South China[J]. Ore Geology Reviews, 2018, 99: 166-179.
    [60] 轩一撒, 袁顺达, 原垭斌, 等. 湘南尖峰岭岩体锆石U-Pb年龄、地球化学特征及成因[J]. 矿床地质, 2014, 33(6): 1379-1390. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201406016.htm

    Xuan Y S, Yuan S D, Yuan Y B, et al. Zircon U-Pb age, geochemistry and petrogenesis of Jianfengling pluton in southern Hunan Province[J]. Mineral Deposits, 2014, 33(6): 1379-1390(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201406016.htm
    [61] Song M J, Shu L S, Santosh M. Early Mesozoic granites in the Nanling Belt, South China: Implications for intracontinental tectonics associated with stress regime transformation[J]. Tectonophysics, 2016, 676: 148-169.
    [62] 赵葵东, 蒋少涌, 朱金初, 等. 桂东北花山-姑婆山侵入杂岩体和暗色包体的锆石微区Hf同位素组成及其成岩指示意义[J]. 科学通报, 2009, 54(23): 3716-3725. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200923023.htm

    Zhao K D, Jiang S Y, Zhu J C, et al. Hf isotopic composition of zircons from theHuashan-Guposhan intrusive complex and their mafic enclaves in northeastern Guangxi: Implication for petrogenesis[J]. Chinese Science Bulletin, 2009, 54(23): 3716-3725(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200923023.htm
    [63] Lü Z H, Zhang H, Tang Y, et al. etrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope[J]. Ore Geology Reviews, 2018, 95: 161-181.
    [64] William S, Alexander F, Karen W, et al. Bulk composition of Mt. Mica Pegmatite, Maine, USA: Implications for the origin of an LCT type pegmatite by anatexis[J]. The Canadian Mineralogist, 2016, 54(4): 1053-1070.
    [65] Müller A, Romer L R, Pesersen R. The Sveconorwegian Pegmatite Province-Thousands of Pegmatites Without Parental Granites[J]. The Canadian Mineralogist, 2017, 55(2): 283-315.
    [66] Akoh J U, Ogunleye P O, Ibrahim A A. Geochemical evolution of micas and Sn-, Nb-, Ta-mineralization associated with the rare metal pegmatite in Angwan Doka, central Nigeria[J]. Journal of African Earth Sciences, 2015, 112: 24-36.
  • 加载中
图(5)
计量
  • 文章访问数:  844
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02

目录

    /

    返回文章
    返回