留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑含水率对人工冻结红黏土力学特性的影响

王泽成 李栋伟 张潮潮 罗昌泰 卜文杰 贾志文 陈昊

王泽成, 李栋伟, 张潮潮, 罗昌泰, 卜文杰, 贾志文, 陈昊. 考虑含水率对人工冻结红黏土力学特性的影响[J]. 地质科技通报, 2022, 41(6): 287-293. doi: 10.19509/j.cnki.dzkq.2022.0090
引用本文: 王泽成, 李栋伟, 张潮潮, 罗昌泰, 卜文杰, 贾志文, 陈昊. 考虑含水率对人工冻结红黏土力学特性的影响[J]. 地质科技通报, 2022, 41(6): 287-293. doi: 10.19509/j.cnki.dzkq.2022.0090
Wang Zecheng, Li Dongwei, Zhang Chaochao, Luo Changtai, Bu Wenjie, Jia Zhiwen, Chen Hao. Effect of water content on the mechanical properties of artificially frozen red clay[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 287-293. doi: 10.19509/j.cnki.dzkq.2022.0090
Citation: Wang Zecheng, Li Dongwei, Zhang Chaochao, Luo Changtai, Bu Wenjie, Jia Zhiwen, Chen Hao. Effect of water content on the mechanical properties of artificially frozen red clay[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 287-293. doi: 10.19509/j.cnki.dzkq.2022.0090

考虑含水率对人工冻结红黏土力学特性的影响

doi: 10.19509/j.cnki.dzkq.2022.0090
基金项目: 

国家自然科学基金项目 41977236

国家自然科学基金项目 41672278

江西省自然科学基金项目 20192ACBL20002

新疆兵团科技计划基金项目 2020AB003

详细信息
    作者简介:

    王泽成(1995-), 男, 现正攻读地质资源与地质工程专业硕士学位, 主要从事冻土与地下工程等方面的研究工作。E-mail: zcwang1810@163.com

    通讯作者:

    李栋伟(1978-), 男, 教授, 主要从事冻土工程和隧道工程等方面的教学和科研工作。E-mail: dwli2005@163.com

  • 中图分类号: TU432

Effect of water content on the mechanical properties of artificially frozen red clay

  • 摘要:

    在冻结法施工中, 冻土的强度及变形特性对冻结壁的稳定性至关重要。为了研究不同含水率对冻结作用下土的强度和蠕变的影响, 以江西红黏土为研究对象, 通过冻结三轴试验, 在-10℃下研究含水率对冻结红黏土强度及蠕变特征的影响。试验结果表明: 16%~32%含水率范围内, 冻结红黏土的抗压强度随含水率的增加先增大后减小; 16%~28%含水率范围内, 随着含水率增大, 其黏聚力逐渐增大, 内摩擦角逐渐减小; 围压为0.2 MPa与0.5 MPa下的蠕变曲线都显示含水率较低时只会出现衰减蠕变阶段和稳定蠕变阶段, 含水率较高时会出现加速蠕变阶段。含水率对红黏土的力学性质影响较大, 研究成果可为江西地区红黏土地层地铁隧道建设人工冻结法施工提供参考。

     

  • 图 1  红黏土颗粒级配曲线

    Figure 1.  Grain size distribution curve of the red clay

    图 2  试样恒温专用环境箱

    Figure 2.  Special environment chamber for control soil sample temperature

    图 3  MTS疲劳试验机

    Figure 3.  MTS fatigue test mechine

    图 4  三轴剪切试验后试样破坏形态

    Figure 4.  Failure pattern of the specimen after triaxial shear test

    图 5  0.2 MPa围压下不同含水率冻结红黏土的偏应力-轴向应变曲线

    Figure 5.  Variation of deviator stress of frozen red clay and axial strain with different water contents under a confining pressure of 0.2 MPa

    图 6  0.5 MPa围压下不同含水率冻结红黏土的偏应力-轴向应变曲线

    Figure 6.  Variation of deviator stress of frozen red clay and axial strain with different water contents under a confining pressure of 0.5 MPa

    图 7  1.0 MPa围压下不同含水率冻结红黏土的偏应力-轴向应变曲线

    Figure 7.  Variation of deviator stress of frozen red clay and axial strain with different water contents under a confining pressure of 1.0 MPa

    图 8  不同围压下冻结红黏土剪切强度与含水率的关系曲线

    Figure 8.  Relationship curves of frozen red clay between shear strength and the water content under different confining pressures

    图 9  不同含水率下冻结红黏土的摩尔强度包络线

    Figure 9.  Shear strength envalopes of frozen red clay with different water contents

    图 10  冻结红黏土的含水率与cφ关系图

    Figure 10.  Water contents versus c, φ of frozen red clay

    图 11  0.2 MPa围压下不同含水率冻结红黏土的蠕变曲线

    Figure 11.  Creep curves with different water contents of frozen red clay under a confining pressure of 0.2 MPa

    图 12  0.5 MPa围压下不同含水率冻结红黏土的蠕变曲线

    Figure 12.  Creep curves with different water contents of frozen red clay under a confining pressure of 0.5 MPa

    表  1  试验红黏土物理参数

    Table  1.   Physical parameters of the red clay

    液限wL/% 塑限wP/% 最大干密度ρd/(g·cm-3) 天然含水率ω/% 最优含水率ω/% 相对密度Gs
    45.5 18.2 1.693 22.3 19.7 2.72
    下载: 导出CSV

    表  2  试验方案

    Table  2.   Testing program

    编号 含水率/% 围压/MPa 试验温度/℃ 干密度/(g·cm-3) 试验内容
    A-16 16 0.2 三轴剪切、三轴蠕变
    A-18 18 三轴剪切、三轴蠕变
    A-20 20 三轴剪切、三轴蠕变
    A-22 22 三轴剪切、三轴蠕变
    A-24 24 三轴剪切、三轴蠕变
    A-28 28 三轴剪切
    A-32 32 三轴剪切
    B-16 16 0.5 -10 1.693 三轴剪切、三轴蠕变
    B-18 18 三轴剪切、三轴蠕变
    B-20 20 三轴剪切、三轴蠕变
    B-22 22 三轴剪切、三轴蠕变
    B-24 24 三轴剪切、三轴蠕变
    B-28 28 三轴剪切
    B-32 32 三轴剪切
    C-16 16 1.0 三轴剪切
    C-18 18 三轴剪切
    C-20 20 三轴剪切
    C-22 22 三轴剪切
    C-24 24 三轴剪切
    C-28 28 三轴剪切
    C-32 32 三轴剪切
    注:每组试验都设置至少一组对照组
    下载: 导出CSV
  • [1] 岳建刚. 不同应力路径下南昌红土的变形与强度特性研究[D]. 江苏徐州: 中国矿业大学, 2017.

    Yue J G. Study on characteristics of deformation and strength of Nanchang laterite in different stress paths[D]. Xuzhou, Jiangsu: China University of Mining and Technology, 2017(in Chinese with English abstract).
    [2] Zhou C Y, Jing X D, Liu Z, et al. Disintegration characteristics and modification of weathered soil in red beds in southern China[J]. Journal of Engineering Geology, 2019, 27(6): 1253-1261.
    [3] 张新启, 龚爱民, 徐兴倩, 等. 考虑含水率变化影响的红黏土边坡双强度折减法研究[J]. 水利水电技术, 2020, 51(9): 181-186. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202009021.htm

    Zhang X Q, Gong A M, Xu X Q, et al. Double strength reduction method-based study on red clay slope under consideration of impact from water content variation[J]. Water Resources and Hydropower Engineering, 2020, 51(9): 181-186 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202009021.htm
    [4] 高彬, 陈筠, 杨恒, 等. 红黏土在不同应力路径下的力学特性试验研究[J]. 地下空间与工程学报, 2018, 14(5): 1202-1212. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805008.htm

    Gao B, Chen J, Yang H, et al. Experimental study on mechanical properties of red clay under different stress paths[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1202-1212(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805008.htm
    [5] 周龙. 非饱和红土强度及变形特性试验研究[D]. 南昌: 南昌大学, 2014.

    Zhou L. Experimental research on strength and deformation characteristics of unsaturated laterite[D]. Nanchang: Nanchang University, 2014(in Chinese with English abstract).
    [6] 刘小文, 常立君, 胡小荣. 非饱和红土基质吸力与含水率及密度关系试验研究[J]. 岩土力学, 2009, 30(11): 3302-3306. doi: 10.3969/j.issn.1000-7598.2009.11.014

    Liu X W, Chang L J, Hu X R. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. Rock and Soil Mechanics, 2009, 30(11): 3302-3306(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.11.014
    [7] 赵永虎, 米维军, 赵庆伦, 等. 红黏土隧道围岩含水率变化及变形特征分析[J]. 铁道建筑, 2019, 59(8): 89-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201908022.htm

    Zhao Y H, Mi W J, Zhao Q L, et al. Analysis of water content change and deformation characteristics of surrounding rock of red clay tunnel[J]. Railway Engineering, 2019, 59(8): 89-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201908022.htm
    [8] 赵亚文. 不同含水率下红黏土抗剪强度特性的研究方法探讨[J]. 开封大学学报, 2017, 31(3): 95-96. doi: 10.3969/j.issn.1008-343X.2017.03.024

    Zhao Y W. Discussion on research methods of shear strength characteristics of red clay under different moisture content[J]. Journal of Kaifeng University, 2017, 31(3): 95-96(in Chinese with English abstract). doi: 10.3969/j.issn.1008-343X.2017.03.024
    [9] 李怀鑫, 林斌, 陈士威, 等. 不同含水率下红黏土软化模型及强度试验研究[J]. 黄金科学技术, 2020, 28(3): 442-449. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ202003019.htm

    Li H X, Lin B, Chen S W, et al. Study on the softening model and strength of red clay at different water content[J]. Gold Science and Technology, 2020, 28(3): 442-449(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ202003019.htm
    [10] 叶云雪. 江西非饱和红土土-水特征曲线研究[D]. 南昌: 南昌大学, 2014.

    Ye Y X. Research on soil-water characteristic curve of unsaturated laterite in Jiangxi[D]. Nanchang: Nanchang University, 2014(in Chinese with English abstract).
    [11] 胡世丽, 蒋冰. 级配和含水量对赣南红土抗剪强度特性影响的试验研究[J]. 江西理工大学学报, 2021, 42(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-NFYX202101002.htm

    Hu S L, Jiang B. Experimental study of the influence of water content and particle size distribution on shear strength of red soil in South Jiangxi[J]. The Jiangxi University of Science and Technology Journal, 2021, 42(1): 1-6(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NFYX202101002.htm
    [12] Long Z L, Cheng Y Z, Yang G Y, et al. Study on triaxial creep test and constitutive model of compacted red clay[J/OL]. International Journal of Civil Engineering, 2020: 1-15. doi: 10.1007/s40999-020-00572-x.
    [13] Fang J, Zhu J A, Meng L. Water-sensitive properties of shear strength of Bijie red clay under direct shear testing[C]//Anon. IOP Conference Series: Earth and Environmental Science. [S. l.]: IOP Publishing, 2019: 052083.
    [14] Xue K X, Wang S F, Hu Y X, et al. Creep behavior of red clay under triaxial compression condition[J]. Frontiers in Earth Science, 2020, 7: 345-356.
    [15] 胡艳欣. 红黏土含水量和干密度与抗剪强度的相关性分析[J]. 人民长江, 2017, 48(增刊1): 249-252. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2017S1068.htm

    Hu Y X. Correlation analysis of water content, dry density and shear strength of red clay[J]. Yangtze River, 2017, 48(S1): 249-252(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2017S1068.htm
    [16] 陈筠, 高彬, 白文胜, 等. 红黏土在卸荷状态下的力学特性试验研究[J]. 地下空间与工程学报, 2019, 15(5): 1393-1401. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201905015.htm

    Chen J, Gao B, Bai W S, et al. Experimental study on the relationship between unloading ratio and deformation of red clay under excavation unloading[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(5): 1393-1401 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201905015.htm
    [17] 周盛涛, 方文, 蒋楠, 等. 冻融循环作用下砂岩单轴压缩破坏断口特征分形研究[J]. 地质科技通报, 2020, 39(5): 61-68. doi: 10.19509/j.cnki.dzkq.2020.0518

    Zhou S T, Fang W, Jiang N, et al. Fractal geometry study on uniaxial compression fracture characteristics of sandstone subjected to freeze-thaw cycles[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 61-68(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0518
    [18] 穆锐, 黄质宏, 浦少云, 等. 循环荷载下原状红黏土的累积变形特征及动本构关系研究[J]. 岩土力学, 2020, 41(2): 1-10.

    Mu R, Huang Z H, Pu S Y, et al. Accumulated deformation characteristics of undisturbed red clay under cyclic loading and dynamic constitutive relationship[J]. Rock and Soil Mechanics, 2020, 41(2): 1-10(in Chinese with English abstract).
    [19] 唐保春, 马月花, 权国苍, 等. 冻土冻融对地下水的影响: 以祁连山多年冻土区大通河谷融区为例[J]. 地质科技情报, 2016, 35(4): 164-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604026.htm

    Tang B C, Ma Y H, Quan G C, et al. Impact of freezing-thawing process of frozen soil on ground water: A case study in the Datong River valley area of the Qilian permafrost region[J]. Geological Science and Technology Information, 2016, 35(4): 164-171(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604026.htm
    [20] 左庆祥. 冻融循环作用下武汉红黏土工程特性试验研究[D]. 武汉: 武汉科技大学, 2020.

    Zuo Q X. Experimental sstudy on engineering properties of Wuhan red clay under freeze-thaw cycles[D]. Wuhan: Wuhan University of Science and Technology, 2020(in Chinese with English abstract).
    [21] 薛珂, 温智, 马小涵, 等. 冻结作用对青藏红黏土及兰州粉土微观结构的影响分析[J]. 冰川冻土, 2019, 41(5): 1122-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201905012.htm

    Xue K, Wen Z, Ma X H, et al. Experimental study of the influence of freezing-thawing cycles on physical and mechanical properties of Qinghai-Tibet red clay[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1122-1129(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201905012.htm
    [22] 薛珂, 杨明彬, 温智, 等. 基于pF Meter的土体冻结特征曲线研究[J]. 中国公路学报, 2018, 31(3): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201803004.htm

    Xue K, Yang M B, Wen Z, et al. pF Meter-based research on soil freezing characteristic curves[J]. China Journal of Highway and Transport, 2018, 31(3): 22-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201803004.htm
    [23] 李国强. 人工冻结红黏土力学特性试验研究[D]. 合肥: 安徽理工大学, 2018.

    Li G Q. Experimental study on mechanical properties of artificially frozen red clay[D]. Heifei: Anhui University of Science and Technology, 2018(in Chinese with English abstract).
    [24] 蔡正银, 吴志强, 黄英豪, 等. 含水率和含盐量对冻土无侧限抗压强度影响的试验研究[J]. 岩土工程学报, 2014, 36(9): 1580-1586. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409005.htm

    Cai Z Y, Wu Z Q, Huang Y H, et al. Influence of water and salt contents on strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1580-1586(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409005.htm
    [25] 李栋伟, 汪仁和, 林斌, 等. 冻黏土黏弹塑本构方程及试验验证[J]. 煤炭工程, 2005(8): 69-71.

    Li D W, Wang R H, Lin B, et al. Verification on viscoelastic plastic constructive equation and test of freezing clay[J]. Coal Engineering, 2005(8): 69-71 (in Chinese with English abstract).
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  422
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-13

目录

    /

    返回文章
    返回