留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台阶式双面加筋路堤地震响应规律研究

樊成 熊克健 刘杰 刘华北

樊成, 熊克健, 刘杰, 刘华北. 台阶式双面加筋路堤地震响应规律研究[J]. 地质科技通报, 2023, 42(3): 300-310. doi: 10.19509/j.cnki.dzkq.2022.0097
引用本文: 樊成, 熊克健, 刘杰, 刘华北. 台阶式双面加筋路堤地震响应规律研究[J]. 地质科技通报, 2023, 42(3): 300-310. doi: 10.19509/j.cnki.dzkq.2022.0097
Fan Cheng, Xiong Kejian, Liu Jie, Liu Huabei. Seismic response analysis of tiered back-to-back mechanically stabilized earth(MSE) walls subjected to different earthquake loadings[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 300-310. doi: 10.19509/j.cnki.dzkq.2022.0097
Citation: Fan Cheng, Xiong Kejian, Liu Jie, Liu Huabei. Seismic response analysis of tiered back-to-back mechanically stabilized earth(MSE) walls subjected to different earthquake loadings[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 300-310. doi: 10.19509/j.cnki.dzkq.2022.0097

台阶式双面加筋路堤地震响应规律研究

doi: 10.19509/j.cnki.dzkq.2022.0097
基金项目: 

国家自然科学基金项目 51669031

新疆交通设计院科研基金项目 KY2019092504

中央高校基本科研业务费 HUST:2020JYCXJJ047

详细信息
    作者简介:

    樊成(1994—),男,现正攻读岩土工程专业博士学位,主要从事加筋土结构的抗震研究工作。E-mail: fancl130@163.com

    通讯作者:

    刘杰(1986—),男,高级工程师,主要从事路基工程研究工作。E-mail: hfutliujie@163.com

  • 中图分类号: P631.4

Seismic response analysis of tiered back-to-back mechanically stabilized earth(MSE) walls subjected to different earthquake loadings

  • 摘要:

    双面加筋路堤是一种较为新型的路堤形式,由于其优良的抗震性能而被越来越广泛地运用于道路建设工程中,而很多双面加筋路堤因工程建设需要分级设计为台阶型。然而国内外对该结构的抗震规律及性能的研究较少,且各类规范并未针对性提出明确的抗震设计方法。在前人的研究基础上,应用非线性动力有限元法分析了双级台阶式双面加筋路堤在地震作用下的响应特性。对填土应用小应变硬化土模型进行了模拟,在模型中考虑了模块面板间以及面板与土体之间的动力作用。为了深入理解加筋土结构的地震动力响应规律,选取了世界各地一类场地上的18条地震动作为地震输入,这些地震动的频谱特性和强度均有较大区别,但是地震的峰值加速度均调幅为0.4g(g为重力加速度)。结果表明:合理的台阶设置能有效减小结构震后变形,提高整体抗震稳定性;台阶式双面加筋路堤的地震位移模式主要受输入地震动频谱特性和结构自振频率性质的共同影响,台阶宽度的变化改变了结构质量及刚度的分布,一定程度影响了结构的振动形态。本研究建立起结构整体筋材最大拉力与输入地震动Arias强度(IAinput)、地震持续时间Td、台阶宽度C、地震卓越频率fi以及结构固有频率fr的拟合关系式,从一个侧面定位了这些影响因素对双面加筋路堤抗震性能的影响。经过研究,在实际工程中应控制面板附近土体的压实度,使其满足工程要求,合理设置台阶和台阶宽度,可以减少路基在地震作用下顶部的不均匀沉降和面板的侧向位移;在路堤结构底部筋材拉力较大部分,可通过设置抗拉强度更大的筋带来增强整体结构的稳定性。研究结果可以为实际工程设计提供参考。

     

  • 图 1  台阶式双面加筋路堤模型示意图

    H.路堤高度; H2.下级台阶高度; L.土工格栅长度; C.台阶宽度; Sv.竖向加筋间距; q.路堤均布荷载

    Figure 1.  Tiered back-to-back MSE wall model

    图 2  0.02g(g为重力加速度)输入的白噪声时程图

    Figure 2.  Time-distance of the input excitation with a peak acceleration of 0.02g

    图 3  0.02g输入的白噪声频谱图

    Figure 3.  Spectrum of the input motion with a peak acceleration of 0.02g

    图 4  直立式路堤顶部输出频谱图(台阶宽度C=0)

    Figure 4.  Resonant-frequency characteristics of the back-to-back MSE wall model at the top (tier offset: C=0)

    图 5  4种不同台阶宽度结构顶部沉降

    Figure 5.  Residual road surface settlement of back-to-back MSE walls with different tier offsets

    图 6  结构上层左侧筋材拉力分布对比

    Figure 6.  Comparison of the reinforcement load distributions of the left portion of the upper tiers

    图 7  4种台阶宽度双面加筋路堤的左右面板残余侧移

    Figure 7.  Residual lateral left and right facing displacement of back-to-back MSE walls with four tier offsets

    图 8  4种台阶宽度结构的中轴线残余侧移

    Figure 8.  Residual lateral displacement of the central axis of back-to-back MSE walls with four tier offsets

    图 9  部分地震作用下左右面板与中轴线残余侧移的比较

    Figure 9.  Comparison of the residual lateral displacement of the left and right facing and central axes for typical earthquake cases

    图 10  左右面板残余侧移最大差值随台阶宽度的变化

    Figure 10.  Relationship between the tier offset and the maximum difference between the residual lateral left and right facing displacements

    图 11  左侧筋材最大拉力

    Figure 11.  Maximum reinforcement loads

    图 12  2种地震作用后左侧筋材最大拉力对比

    Figure 12.  Comparison of maximum reinforcement loads at the end of shaking for two typical cases

    图 13  地震作用后整体筋材最大拉力随台阶宽度的变化

    Figure 13.  Relationship between tier offset and the maximum reinforcement load at the end of shaking

    图 14  整体筋材最大拉力与左右面板残余侧移最大差值的关系

    Figure 14.  Relationship between the maximum reinforcement load and the maximum difference between the residual lateral left and right facing displacements

    图 15  地震动强度指标和虚拟参数S2的关系

    Figure 15.  Relationship between virtual parameter S2 and the earthquake intensity index

    表  1  材料参数

    Table  1.   Material parameters

    参数 回填土 面板间接触面 地基土
    材料模型 HSs M-C M-C
    材料类型 排水的 排水的 排水的
    γunsat 14.3 20 20
    Eref/E50ref 5 000 2×106 1.5×105
    ν 0.2 0.3
    Eoedref 5 800
    Eurref 17 000
    m 0.5
    cref 2.5 50 2.3
    φ 37.3 35 40.5
    ψ 7 0 10
    γ0.7 0.000 4
    G0ref 30 000
    下载: 导出CSV

    表  2  各参数的定义

    Table  2.   Parameter definition

    符号 定义 单位
    γunsat 土体天然重度 kN/m3
    Eref 土体杨氏模量 kN/m2
    ν 泊松比
    E50ref 标准三轴排水试验得到的割线模量 kN/m2
    Eoedref 侧限加载试验得到的切线模量 kN/m2
    Eurref 卸载重加载模量 kN/m2
    m 幂指数
    cref 土体黏聚力 kN/m2
    φ 土体内摩擦角 °
    ψ 土体剪胀角 °
    γ0.7 割线模量为70%的应变水平
    G0ref 初始小应变模量 kN/m2
    H 路堤高度 m
    L 土工格栅长度 m
    SV 竖向加筋间距 m
    下载: 导出CSV

    表  3  18种地震动信息

    Table  3.   Characteristics of 18 input earthquake motions

    地震名 Td/s fi IA $\frac{I_{\mathrm{A}}}{\sqrt{T_{\mathrm{d}}}}$
    ALTADENA 4.3 2.78 0.89 0.43
    ARRAY 12.0 10.00 1.62 0.47
    CORRALIT 12.1 3.33 1.28 0.37
    EL_CENTRO 29.5 3.85 2.70 0.50
    HOLLISTE 22.0 1.85 2.53 0.54
    HOLLY-WOOD 44.0 2.08 4.45 0.67
    LACC_NOR 21.0 4.17 2.40 0.52
    LEXINGT 6.4 0.98 1.49 0.59
    LOMA_PRIETA 11.0 1.56 1.68 0.51
    NEWHALL 11.0 1.47 2.56 0.77
    OAK_WHAF 9.4 1.52 1.32 0.43
    PARKFIELD 13.0 6.25 0.80 0.22
    PETROLIA 20.0 1.52 1.55 0.35
    POMONA 10.7 4.55 1.30 0.40
    S_MONICA 15.0 8.33 1.35 0.35
    SYLMARFF 9.46 2.78 1.10 0.36
    TAFT 36.0 2.78 3.40 0.57
    YERMO 34.9 4.55 4.69 0.79
    fi为地震卓越频率;Td为地震动持续时间;IA为Arias强度
    下载: 导出CSV

    表  4  公式(6)系数

    Table  4.   Coefficients in formula (6)

    a b c d
    3.96 1.78 -3.01 -0.033
    下载: 导出CSV
  • [1] Anon. Design and construction of mechanically stabilized earth walls and reinforced soil slopes: Volume I. FHWA-NHI-10-024[S]. Washington, D.C. : National Highway Institute Federal Highway Administration and U.S. Department of Transportation, 2009.
    [2] 曹建洲, 刘华北, 樊成. 双面加筋路堤的地震动力响应分析[J]. 岩土工程学报, 2019, 41(5): 918-926. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905019.htm

    Cao J Z, Liu H B, Fan C. Seismic response analysis of back-to-back mechanically stabilized earth (MSE) walls[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 918-926(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905019.htm
    [3] Güler E, Öztürk T E. Dynamic behaviour of geosynthetic reinforced back to back retaining wall[C]//Anon. Design and Practice of Geosynthetic-Reinforced Soil Structures. [S. l. ]: [s. n. ], 2013: 134-141.
    [4] Hardianto F S, Truong K M. Seismic deformation of back-to-back mechanically stabilized earth (MSE) walls[C]//Anon. Earth Retention Conference. Bellevue, Washington, USA: [s. n. ], 2010: 704-711.
    [5] Djabri M, Benmebarek S. Seismic response of back-to-back MSE walls[C/OL]//Anon. Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1). Tunisia: [s. n. ], 2018: 327-330. https://doi.org/10.1007/978-3-030-01665-4_75 .
    [6] Benmebarek S, Djabri M. FE analysis of back-to-back mechanically stabilized earth walls under cyclic harmonic loading[J]. Indian Geotechnical Journal, 2018, 48(3): 498-509. doi: 10.1007/s40098-017-0269-z
    [7] Arias A. A measure of earthquake intensity, in seismic design for nuclear power plants[M]. Cambridge, Massachusetts: MIT Press, 1970.
    [8] Safaee A M, Mahboubi A, Noorzad A. Experimental investigation on the performance of multi-tiered geogrid mechanically stabilized earth (MSE) walls with wrap-around facing subjected to earthquake loading[J]. Geotextiles and Geomembranes, 2020, 49(1): 130-145. http://www.sciencedirect.com/science/article/pii/S0266114420301047
    [9] Kumari S, Bhattacharjee A. Numerical simulation of tiered reinforced soil retaining wall subjected to dynamic excitations[C]//Anon. Indian Geotechnical Conference IGC. [S. l. ]: [s. n. ], 2018: 739-750.
    [10] Li H, Cai X G, Jing L P, et al. Reinforcement strain and potential failure surface of geogrid reinforced soil-retaining wall under horizontal seismic loading[J]. Shock and Vibration, 2020(3): 1-17.
    [11] Li S H, Cai X G, Jing L P, et al. Lateral displacement control of modular-block reinforced soil retaining walls under horizontal seismic loading[J]. Soil Dynamics and Earthquake Engineering, 2020, 141: 106485. http://doc.paperpass.com/foreign/rgArti2020307592476.html
    [12] 蔡晓光, 李思汉, 黄鑫. 双级加筋土挡墙动力特性振动台试验[J]. 中国公路学报, 2018, 31(2): 200-207. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201802022.htm

    Cai X G, Li S H, Huang X. Shaking table tests on dynamic characteristics of two-stage reinforced soil-retaining wall[J]. China Journal of Highway and Transport, 2018, 31(2): 200-207(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201802022.htm
    [13] 蔡晓光, 李思汉, 黄鑫. 水平地震作用下双级加筋土挡墙格栅应变及破裂面分析[J]. 岩土工程学报, 2018, 40(8): 1528-1534. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808023.htm

    Cai X G, Li S H, Huang X. Geogrid strain and failure surface of two-stage reinforced soil retaining wall under horizontal seismic loading[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1528-1534(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808023.htm
    [14] Liu H B, Yang G Q, Ling H I. Seismic response of multi-tiered reinforced soil retainingwalls[J]. Soil Dynamics and Earthquake Engineering, 2014, 61/62 (6): 1-12.
    [15] Liu H B. Comparing the seismic responses of single- and multi-tiered geosynthetic reinforced soil walls[C]//Anon. Geo-frontiers Congress. [S. l. ]: [s. n. ], 2011, 2: 3478-3486.
    [16] 肖成志, 李海谦, 高珊, 等. 循环荷载下台阶式加筋土挡墙力学与变形性能的试验研究[J]. 岩石力学与工程学报, 2021, 40(4): 802-813. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104013.htm

    Xiao C Z, Li H Q, Gao S, et al. Experimental study on mechanical and deformation performances ofgeogrids reinforced soil retaining walls under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 802-813(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104013.htm
    [17] 雷胜友. 双面加筋土高挡墙的离心模型试验[J]. 岩石力学与工程学报, 2005, 24(3): 417-423. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050300B.htm

    Lei S Y. Centrifugal modelling of high double-face reinforced earth retaining wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 417-423(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050300B.htm
    [18] 胡小明, 雷胜友. 双面加筋土高挡墙的离心模型试验研究[J]. 四川大学学报: 工程科学版, 2002, 34(4): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200204009.htm

    Hu X M, Lei S Y. Centrifugal modelling of high double face reinforced earth retaining wall[J]. Journal of Sichuan University: Engineering Science Edition, 2002, 34(4): 38-41(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200204009.htm
    [19] 文广超, 苏林雪, 谢洪波, 等. "5·12"汶川地震前后四川省主要地质灾害时空发育规律[J]. 地质科技通报, 2021, 40(4): 143-152. doi: 10.19509/j.cnki.dzkq.2021.0430

    Wen G C, Su L X, Xie H B, et al. Spatio-temporal development characteristics of major geohazards in Sichuan Province around "5·12" Wenchuan earthquake[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 143-152(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0430
    [20] 刘军, 龚伟, 黄超, 等. 塔里木盆地顺北5号走滑断裂带北段超深层裂缝储层的地震属性表征方法研究及应用[J]. 地质科技通报, 2022, 41(4): 1-11. doi: 10.19509/j.cnki.dzkq.2022.0112

    Liu J, Gong W, Huang C, et al. Seismic attribute characteristics of an ultradeep fractured-reservoir in the northern section of Shunbei No. 5 strike-slip fault zone in Tarim Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 1-11(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0112
    [21] Ling H I, Mohri Y, Leshchinsky D, et al. Large-scale shaking table tests on modular-block reinforced soil retaining walls[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2005, 131(4): 465-476.
    [22] Kramer S L. Geotechnical earthquakeengineering[M]. New Jersey: Prentice Hall, 1996.
    [23] Liu H B, Hung C, Cao J Z. Relationship between Arias intensity and the responses of reinforced soil retaining walls subjected to near-field ground motions[J]. Soil Dynamics and Earthquake Engineering, 2018, 111: 160-168. http://www.onacademic.com/detail/journal_1000040391242310_b5bf.html
    [24] Fan C, Liu H, Cao J, et al. Responses of reinforced soil retaining walls subjected to horizontal and vertical seismic loadings[J]. Soil Dynamics and Earthquake Engineering, 2019, 129: 105969. http://www.sciencedirect.com/science/article/pii/S026772611930003X
    [25] 马书文. 在不均匀沉降条件下基于索理论的加筋土结构设计方法的研究[D]. 重庆: 重庆交通大学, 2018.

    Ma S W. Study on design method of reinforced soil structure based on cable theory under non-uniform settlement condition[D]. Chongqing: Chongqing Jiaotong University, 2018(in Chinese with English abstract).
    [26] Wei L, He Q, Zhang J, et al. Effect of differential settlement on the safety of reinforced retaining wall[C]//Anon. Progress in Safety Science and Technology. Beijing: Science Press, 2004: 378-384.
    [27] 李广信. 土工合成材料构造物的抗震性能[J]. 世界地震工程, 2010, 26(4): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201004006.htm

    Li G X. Behavior of earth structure with geosynthetics in earthquake[J]. World Earthquake Engineering, 2010, 26(4): 33-38(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201004006.htm
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  322
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15

目录

    /

    返回文章
    返回