留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同冷却时间对高温花岗岩可钻性实验研究

陈帅 石祥超 高雷雨 唐杨 李清鲮

陈帅, 石祥超, 高雷雨, 唐杨, 李清鲮. 不同冷却时间对高温花岗岩可钻性实验研究[J]. 地质科技通报, 2023, 42(2): 356-364. doi: 10.19509/j.cnki.dzkq.2022.0102
引用本文: 陈帅, 石祥超, 高雷雨, 唐杨, 李清鲮. 不同冷却时间对高温花岗岩可钻性实验研究[J]. 地质科技通报, 2023, 42(2): 356-364. doi: 10.19509/j.cnki.dzkq.2022.0102
Chen Shuai, Shi Xiangchao, Gao Leiyu, Tang Yang, Li Qingling. Experiment research of the influence of different cooling times on the drillability of high-temperature granite[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 356-364. doi: 10.19509/j.cnki.dzkq.2022.0102
Citation: Chen Shuai, Shi Xiangchao, Gao Leiyu, Tang Yang, Li Qingling. Experiment research of the influence of different cooling times on the drillability of high-temperature granite[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 356-364. doi: 10.19509/j.cnki.dzkq.2022.0102

不同冷却时间对高温花岗岩可钻性实验研究

doi: 10.19509/j.cnki.dzkq.2022.0102
基金项目: 

国家自然科学基金重点项目(地区联合基金) U20A20266

中国石油-西南石油大学创新联合体项目 2020CX040103

详细信息
    作者简介:

    陈帅(1995—),男,现正攻读油气井工程专业硕士学位,主要从事石油工程岩石力学方面的科研工作。E-mail: 3286827731@qq.com

    通讯作者:

    石祥超(1981—),男,教授,博士生导师,主要从事石油工程岩石力学方面的教学与科研工作。E-mail: sxcdream@163.com

  • 中图分类号: P634

Experiment research of the influence of different cooling times on the drillability of high-temperature granite

  • 摘要:

    为了研究高温后花岗岩的可钻性和微观损伤变化, 同时也为了研究高温后不同冷却时间对可钻性的影响, 对高温热处理后的花岗岩冷却不同时间(2, 4, 24, 48 h), 通过可钻性实验和铸体薄片鉴定, 得到高温对花岗岩可钻性的影响规律和影响机理, 同时也得到不同冷却时间对花岗岩可钻性的影响。研究结果表明, 花岗岩在热处理不超过500℃和自然冷却2 h的约束下始终保持一个较高的可钻性级值, 在冷却4, 24, 48 h后, 高温对可钻性的影响表现为3个阶段(第一次劣化阶段、强化阶段、第二次劣化阶段)。微裂纹产生的位置及数量影响着岩石抵抗破碎的难易程度, 400℃热处理后花岗岩内部微裂纹开始显著增加, 当石英颗粒内部产生大量微裂纹时, 花岗岩的可钻性显著降低。100℃热处理后同时冷却不超过4 h会显著影响花岗岩的可钻性, 200~400℃热处理后, 花岗岩的可钻性级值会随着冷却时间(4~48 h)的继续增加显著增加, 500℃对花岗岩产生的损伤是不可恢复的, 600℃已经完全使花岗岩劣化。弄清高温和冷却时间对花岗岩可钻性的影响, 可以为干热岩资源的高效开采提供基础的理论支撑。

     

  • 图 1  实验岩样制备过程

    Figure 1.  Preparation process of experimental rock samples

    图 2  实验方案设计及实验流程

    Figure 2.  Design of experimental scheme and experimental procedure

    图 3  可钻性试验机

    Figure 3.  Drillability testing machine

    图 4  花岗岩可钻性测试后破碎坑

    Figure 4.  Broken pit after granite drillability test

    图 5  高温对可钻性的影响

    a.冷却时间2 h; b.冷却时间分别为4,24,48 h

    Figure 5.  Effect of high temperature on drillability

    图 6  可钻性实验后岩屑

    Figure 6.  Rock fragments after drillability test

    图 7  常温下花岗岩偏光显微图

    a.单偏光图像;b.正交偏光图像;Qtz.石英;An.斜长石;Bt.黑云母;Px.辉石;Mag.磁铁矿

    Figure 7.  Polarized light micrograph of granite at room temperature

    图 8  不同高温下花岗岩单偏光显微图

    a.100℃; b.200℃; c.300℃; d.400℃; e.500℃; f.600℃; 1.晶间微裂纹; 2.穿晶微裂纹

    Figure 8.  Single-polarized micrographs of granite at different high temperatures

    图 9  不同高温下花岗岩正交偏光显微图

    a.100℃; b.200℃; c.300℃; d.400℃; e.500℃; f.600℃; Qtz.石英; An.斜长石; Bt.黑云母; Px.辉石

    Figure 9.  Cross-polarized micrographs of granite at different high temperatures

    图 10  100℃(a), 200, 300℃(b)热处理后不同冷却时间对可钻性的影响规律

    Figure 10.  Influence of different cooling times on drillability after heat treatment at 100℃ (a), 200℃ and 300℃ (b)

    图 11  400℃(a), 500, 600℃(b)热处理后不同冷却时间对可钻性的影响规律

    Figure 11.  Influence of different cooling times on drillability after heat treatment at 400℃ (a), 500℃ and 600℃ (b)

    表  1  不同冷却时间和不同热处理温度下花岗岩可钻性级值

    Table  1.   Drillability index of granite under different cooling times and different heat treatment temperatures

    温度/
    冷却时间/h
    2 4 24 48
    100 5.66,5.91 4.33,4.25 4.10,3.37 4.08,4.16
    200 5.73,5.14 5.68,5.80 6.11,6.19 6.49,6.53
    300 5.65,6.38 6.73,6.76 7.45,7.89 7.21,7.64
    400 6.58,6.26 4.93,4.96 5.28,5.15 6.13,6.13
    500 6.03,6.18 4.79,4.62 3.57,3.98 3.70,3.38
    600 2.08,4.62 岩石破坏 1.01,2.60 2.16,2.09
    注:2次测试结果
    下载: 导出CSV
  • [1] 刘德民, 张昌生, 孙明行, 等. 干热岩勘查评价指标与形成条件[J]. 地质科技通报, 2021, 40(3): 1-11 doi: 10.19509/j.cnki.dzkq.2021.0316

    Liu D M, Zhang C S, Sun M X, et al. Evaluation indexes and formation conditions of hot dry rock exploration[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 1-11(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0316
    [2] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-450. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704002.htm

    Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 449-450(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704002.htm
    [3] 朱喜, 张庆莲, 刘彦广. 基于热储法的鲁西平原地热资源评价[J]. 地质科技情报, 2016, 35(4): 172-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604027.htm

    Zhu X, Zhang Q L, Liu Y G. Evaluation of the geothermal resources in the plain of West Shandong Province[J]. Geological Science and Technology Information, 2016, 35(4): 172-177(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604027.htm
    [4] 窦斌, 高辉, 周刚, 等. 我国发展增强型地热开采技术所面临的机遇与挑战[J]. 地质科技情报, 2014, 33(5): 208-210. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405032.htm

    Dou B, Gao H, Zhou G, et al. Opportunities and challenges of developing enhance geothermal system technology in China[J]. Geological Science and Technology Information, 2014, 33(5): 208-210(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405032.htm
    [5] 王贵玲, 张发旺, 刘志明. 国内外地热能开发利用现状及前景分析[J]. 地球学报, 2000, 21(2): 134-139. doi: 10.3321/j.issn:1006-3021.2000.02.004

    Wang G L, Zhang F W, Liu Z M. An analysis of present situation and prospects of geothermal energy development and utilization in the world[J]. Acta Geoscientica Sinica, 2000, 21(2): 134-139(in Chinese with English abstract). doi: 10.3321/j.issn:1006-3021.2000.02.004
    [6] 赵静, 王旭升, 万力. 深层地热资源评价中的回收率问题[J]. 地质科技情报, 2008, 27(6): 89-92. doi: 10.3969/j.issn.1000-7849.2008.06.017

    Zhao J, Wang X S, Wang L. The recovery rate in assessment of deep geothermal resources[J]. Geological Science and Technology Information, 2008, 27(6): 89-92(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2008.06.017
    [7] 王贵玲. 我国地热资源勘查评价战略研究[J]. 地热能, 2010(6): 15-20. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-IGNH201010001010.htm

    Wang G L. Study on exploration and evaluation strategy of geothermal resources in China[J]. Geothermal Energy, 2010(6): 15-20(in Chinese with English abstract). https://cpfd.cnki.com.cn/Article/CPFDTOTAL-IGNH201010001010.htm
    [8] 王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm

    Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm
    [9] 方新宇, 许金余, 刘石, 等. 高温后花岗岩的劈裂试验及热损伤特性研究[J]. 岩石力学与工程学报, 2016, 35(增刊1): 2687-2694. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1012.htm

    Fang X Y, Xu J Y, Liu S, et al. Research on splitting-tensile tests and thermal damage of granite under post-high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 2687-2694(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1012.htm
    [10] Qin Y, Jing H W, Liu R C, et al. Pore characteristics and nonlinear flow behaviors of granite exposed to high temperature[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(3): 1239-1257. doi: 10.1007/s10064-019-01628-6
    [11] Qin Y, Tian H, Xu N X, et al. Physical and mechanical properties of granite after high-temperature treatment[J]. Rock Mechanics and Rock Engineering, 2020, 53(1): 305-322. doi: 10.1007/s00603-019-01919-0
    [12] 阴伟涛, 赵阳升, 冯子军. 高温三轴应力下粗、细粒花岗岩力学特性研究[J]. 太原理工大学学报, 2020, 51(5): 627-633. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY202005002.htm

    Yin W T, Zhan Y S, Feng Z J. Study on the mechanical properties of coarse-grained and fine-grained granite under high temperature triaxial stress[J]. Journal of Taiyuan University of Technology, 2020, 51(5): 627-633(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY202005002.htm
    [13] 苏国韶, 陈智勇, 尹宏雪, 等. 高温后花岗岩岩爆的真三轴试验研究[J]. 岩土工程学报, 2016, 38(9): 1586-1594. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609006.htm

    Su G S, Chen Z Y, Yin H X, et al. True triaxial tests on rockburst of granite after high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1586-1594(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609006.htm
    [14] 马兵, 陈虹宇. 高温后花岗岩声发射特征与损伤演化规律[J]. 矿业研究与开发, 2020, 40(1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202001005.htm

    Ma B, Chen H Y. Acoustic emission characteristics and damage evolution of granite after elevated temperature[J]. Mining Research and Development, 2020, 40(1): 22-27(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202001005.htm
    [15] 周波, 汪海阁, 张富成, 等. 温度压力对岩石可钻性和破岩效率影响实验[J]. 石油钻采工艺, 2020, 42(5): 547-552. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC202005003.htm

    Zhou B, Wang H G, Zhang F C, et al. Experiments on the influences of temperature and pressure on rock drillability and rock breaking efficiency[J]. Oil Drilling & Production Technology, 2020, 42(5): 547-552(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC202005003.htm
    [16] 赵金昌, 万志军, 李义, 等. 高温高压条件下花岗岩切削破碎试验研究[J]. 岩石力学与工程学报, 2009, 28(7): 1432-1438. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200907019.htm

    Zhao J C, Wan Z J, Li Y, et al. Research on granite cutting and breaking test under conditions of high temperature and high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1432-1438(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200907019.htm
    [17] 刘石, 许金余. 高温作用对花岗岩动态压缩力学性能的影响研究[J]. 振动与冲击, 2014, 33(4): 195-198. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201404035.htm

    Liu S, Xu J Y. Effect of high temperature on dynamic compressive mechanical properties of granite[J]. Journal of Vibration and Shock, 2014, 33(4): 195-198(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201404035.htm
    [18] 吴阳春, 郤保平, 王磊, 等. 高温后花岗岩的物理力学特性试验研究[J]. 中南大学学报: 自然科学版, 2020, 51(1): 193-203. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202001022.htm

    Wu Y C, Xi B P, Wang L, et al. Experimental study on physico-mechanical properties of granite after high temperature[J]. Journal of Central South University: Science and Technology Edition, 2020, 51(1): 193-203(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202001022.htm
    [19] 喻勇, 徐达, 窦斌, 等. 高温花岗岩遇水冷却后可钻性试验研究[J]. 地质科技情报, 2019, 38(4): 287-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904031.htm

    Yu Y, Xu D, Dou B, et al. Experimental study on drillability of high temperature granite after water cooling[J]. Geological Science and Technology Information, 2019, 38(4): 287-292(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904031.htm
    [20] 张帆, 操旺进, 胡大伟, 等. 高温水冷后循环加卸载条件下花岗岩的渗透性[J]. 沈阳工业大学学报, 2021, 43(1): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGY202101015.htm

    Zhang F, Cao W J, Hu D W, et al. Permeability of granite under cyclic loading and unloading conditions after high temperature water cooling[J]. Journal of Shenyang University of Technology, 2021, 43(1): 82-90(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYGY202101015.htm
    [21] 余莉, 彭海旺, 李国伟, 等. 花岗岩高温-水冷循环作用下的试验研究[J]. 岩土力学, 2021, 42(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104015.htm

    Yu L, Peng H W, Li G W, et al. Experimental study on granite under the action of high temperature and water cooling[J]. Rock and Soil Mechanics, 2021, 42(4): 1-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104015.htm
    [22] 张宇皓, 段志波, 张帆. 高温水冷后花岗岩微观孔径及渗透性分析[J]. 科学技术与工程, 2021, 21(1): 297-302. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202101042.htm

    Zhang Y H, Duan Z B, Zhang F. Analysis of micro-pore structure and permeability of granite after heating and water quenching[J]. Science Technology and Engineering, 2021, 21(1): 297-302(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202101042.htm
    [23] 杨凯, 杨志瑞, 申梓岐. 高温对花岗岩物理及力学性质的影响[J]. 南方农机, 2020, 51(21): 196-198. https://www.cnki.com.cn/Article/CJFDTOTAL-NFLJ202021090.htm

    Yang K, Yang Z R, Shen Z Q. Effects of high temperature on physical and mechanical properties of granites[J]. South Agricultural Machinery, 2020, 51(21): 196-198(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NFLJ202021090.htm
    [24] 罗生银, 窦斌, 田红. 自然冷却后与实时高温下花岗岩物理力学性质对比试验研究[J]. 地学前缘, 2020, 27(1): 178-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001022.htm

    Luo S Y, Dou B, Tian H. Comparative experimental study on physical and mechanical properties of granite after natural cooling and under real-time high temperature[J]. Earth Science Frontiers, 2020, 27(1): 178-184(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001022.htm
    [25] 梅冬, 曾石友, 梁丽, 等. 基于微钻试验金刚石钻头钻进速度的研究[J]. 地质科技情报, 2015, 34(2): 221-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502033.htm

    Mei D, Zeng S Y, Liang L, et al. Research on impregnated diamond bit drilling speed based on micro drilling experiment[J]. Geological Science and Technology Information, 2015, 34(2): 221-224(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502033.htm
    [26] 田敏, 蔡记华, 谷天本, 等. 高寒地区岩石可钻性分析及金刚石钻头选型[J]. 地质科技情报, 2014, 33(2): 171-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402029.htm

    Tian M, Cai J H, Gu T B, et al. Rock drillability analysis and diamond bit model selection in Alpine regions[J]. Geological Science and Technology Information, 2014, 33(2): 171-174(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402029.htm
    [27] 石祥超, 陶祖文, 孟英峰, 等. 牙轮钻头牙齿破岩机理研究进展[J]. 地质科技情报, 2014, 33(4): 225-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404035.htm

    Shi X C, Tao Z W, Meng Y F, et al. The mechanism of rock breakage during bit-tooth penetration: A review[J]. Geological Science and Technology Information, 2014, 33(4): 225-230(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404035.htm
    [28] 中石化胜利石油工程有限公司钻井工艺研究院. 石油天然气钻井工程岩石可钻性测定与分级: SY/T 5426-2016[S]. 国家能源局: 2016.

    Drilling Technology Research Institute of Shengli Petroleum Engineering Corporation Limited, SINOPEC. Drilling engineering for the petroleum and natural gas-rock drillability measurement and its grading: SY/T 5426-2016[S]. National Energy Administration: 2016(in Chinese with English abstract).
    [29] Kumari W G P, Ranjith P G, Perera M S A, et al. Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments[J]. Engineering Geology, 2017, 229: 31-44.
    [30] Griffiths L, Heap M J, Baud P, et al. Quantification of microcrack characteristics and implications for stiffness and strength of granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 138-150.
    [31] 梁铭, 张绍和, 舒彪. 不同冷却方式对高温花岗岩巴西劈裂特性的影响[J]. 水资源与水工程学报, 2018, 29(2): 186-193. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201802031.htm

    Liang M, Zhang S H, Shu B. Effect of different cooling ways on Brazilian tension characteristics of heat-treated granite[J]. Journal of Water Resources and Water Engineering, 2018, 29(2): 186-193(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201802031.htm
    [32] 李利峰, 邓慧琳, 张晓虎, 等. 加载速率对实时高温花岗岩三轴力学特性影响的实验研究[J]. 科学技术与工程, 2020, 20(16): 6397-6403. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202016013.htm

    Li L F, Deng H L, Zhang X H, et al. Experimental study on the effect of loading rate on triaxial mechanical properties of real-time high temperature granite[J]. Science Technology and Engineering, 2020, 20(16): 6397-6403(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202016013.htm
    [33] 闵明, 张强, 蒋斌松, 等. 实时高温下北山花岗岩劈裂试验及声发射特性[J]. 长江科学院院报, 2020, 37(3): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202003019.htm

    Min M, Zhang Q, Jiang B S, et al. Splitting tests and acoustic emission characteristics of Beishan granite under real-time high temperature[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(3): 108-113(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202003019.htm
    [34] 闫炎, 管志川, 玄令超, 等. 复合冲击条件下PDC钻头破岩效率试验研究[J]. 石油钻探技术, 2017, 45(6): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201706005.htm

    Yan Y, Guan Z C, Xuan L C, et al. Experimental study on rock breaking efficiency with a PDC bit under conditions of composite percussion[J]. Petroleum Drilling Techniques, 2017, 45(6): 24-30(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201706005.htm
    [35] 潘德元, 何计彬. 钻井岩屑分形分析的现场应用研究[J]. 探矿工程: 岩土钻掘工程, 2016, 43(11): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201611003.htm

    Pan D Y, He J B. Research on the field application of analysis on cutting particle size[J]. Exploration Engineering: Rock & Soil Drilling and Tunneling, 2016, 43(11): 11-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201611003.htm
    [36] 高元宏, 梁俭, 刘鹏, 等. 青海东昆仑重点成矿带岩石钻进特性及金刚石钻头使用效果分析[J]. 地质科技情报, 2017, 36(5): 228-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705031.htm

    Gao Y H, Liang J, Liu P, et al. Characteristics of rock drilling and the effect of diamond bits used in the key metallogenic belt in East Kunlun, Qinghai[J]. Geological Science and Technology Information, 2017, 36(5): 228-231(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705031.htm
    [37] Shi X C, Gao L Y, Wu J, et al. Effects of cyclic heating and water cooling on the physical characteristics of granite[J]. Energies, 2020, 13(9): 1-18.
    [38] Glover P W J, Band P, Darot M, et al. α/β phase transition in quartz monitored using acoustic emissions[J]. Geophysical Journal International, 1995, 120(3): 775-782.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  460
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-19

目录

    /

    返回文章
    返回