留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

成矿动力学数值计算模拟研究进展:理论、方法与技术

陈伟林 肖凡

陈伟林, 肖凡. 成矿动力学数值计算模拟研究进展:理论、方法与技术[J]. 地质科技通报, 2023, 42(3): 234-249. doi: 10.19509/j.cnki.dzkq.2022.0125
引用本文: 陈伟林, 肖凡. 成矿动力学数值计算模拟研究进展:理论、方法与技术[J]. 地质科技通报, 2023, 42(3): 234-249. doi: 10.19509/j.cnki.dzkq.2022.0125
Chen Weiling, Xiao Fan. Advances in numerical modeling of metallogenic dynamics: A review of theories, methods and technologies[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 234-249. doi: 10.19509/j.cnki.dzkq.2022.0125
Citation: Chen Weiling, Xiao Fan. Advances in numerical modeling of metallogenic dynamics: A review of theories, methods and technologies[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 234-249. doi: 10.19509/j.cnki.dzkq.2022.0125

成矿动力学数值计算模拟研究进展:理论、方法与技术

doi: 10.19509/j.cnki.dzkq.2022.0125
基金项目: 

国家重点研发计划青年科学家项目 2021YFC2900300

国家自然科学基金项目 41872245

广东省基础与应用基础研究基金项目 2020A1515010666

详细信息
    作者简介:

    陈伟林(1997—),男,现正攻读地质学专业硕士学位, 主要从事成矿动力学数值模拟研究工作。E-mail: chenwlin6@mail2.sysu.edu.cn

    通讯作者:

    肖凡(1985—),男,副教授,博士生导师,主要从事矿产普查与勘探和数学地质方面的教学与科研工作。E-mail: xiaofan3@mail.sysu.edu.cn

  • 中图分类号: P611

Advances in numerical modeling of metallogenic dynamics: A review of theories, methods and technologies

  • 摘要:

    成矿动力学数值模拟以数学、物理及化学的基本规律为原理,结合实际地质资料,建立定量表征成矿过程的数学模型(数学-物理方程),再利用有限元或有限差分等方法通过计算机的高效计算进行求解,模拟成矿作用动力学过程及其成矿响应,揭示成矿规律并指导找矿。它集合了地质、数学、物理、化学及计算机等多个学科的研究理论与方法,具有鲜明的多学科交叉融合的特点。近年来,在计算科学与数学地质理论与方法快速发展的推动下,成矿动力学数值模拟研究取得了重要研究进展。为此,归纳和梳理了成矿动力学数值模拟的基本理论与方法,对比了目前4种常用的(成矿)数值模拟软件的特点,结合当前开展这方面研究所取得的进展,介绍了近10年来成矿动力学数值模拟的发展与应用现状。得出以下主要结论与认识:①多场耦合成矿动力学数值模拟是当前能够重现大尺度复杂成矿过程的唯一可行方法,随着高性能计算技术与非线性动力学理论的快速发展与日趋完善,它已成为现代数学地球科学的研究热点和发展方向之一,是揭示成矿机制及获取矿产勘查信息的重要手段,具有很大的发展潜力;②成矿动力学数值模拟目前仍存在模拟参量不确定、多场过程耦合不完全等局限性,是其未来的发展重点,当前已有很多研究致力于破解这方面的难题;③在大数据驱动科学研究的新范式下,成矿动力学数值模拟与机器学习方法相结合,可以有效地反演成矿作用过程并进行矿产定量预测,是成矿动力学数值模拟方法在矿床成因与矿产勘查领域应用研究的重要突破口。理清了成矿动力学数值模拟的基本方法与关键难题,明确了成矿动力学数值模拟对促进矿床成因与勘查研究的重要作用,阐述了成矿动力学数值模拟发展的前缘方向,为成矿动力学计算模拟研究提供了基础指导。

     

  • 图 1  空间六面体应力状态示意图

    Figure 1.  Schematic diagram of the spatial hexahedron stress state

    图 2  成矿动力学多场(过程)耦合数值模拟的概念模型(据文献[4]修改)

    Figure 2.  A conceptual model for multi field (process) coupled numerical simulation of metallogenic dynamics

    图 3  成矿动力学数值模拟的基本步骤

    Figure 3.  Basic steps of the numerical simulation of metallogenic dynamics

    图 4  有限元法的基本原理图

    a.单元划分示意图;b.单元剖分;c.剖分单元细化;d.单元精细化;e.确定单元节点;f.单元节点分析;g.求解节点位移

    Figure 4.  Basic schematic diagram of the finite element method

    图 5  有限差分法的基本原理图

    Figure 5.  Basic schematic diagram of the finite difference method

    图 6  边界元法的基本原理图

    a.离散的内边界单元;b.单元划分示意图;c.离散的外边界单元;en为面的外法线方向的单位向量;边界L离散为N个单元;i为单元号

    Figure 6.  Basic schematic diagram of the boundary element method

    图 7  德兴斑岩铜矿床斑岩体倾伏角(α)变化对成矿控制作用的力-热-流三场耦合数值模拟结果[95]

    a.等效应力等值面图;b.体积应变等值面图;c.断裂面达西速度图;d.温度切面图

    Figure 7.  Results of numerical simulation of the force-heat-flow of the controlling effect of porphyry dip angle (α) on mineralization in the Dexing porphyry copper deposit

    图 8  基于成矿条件数值模拟的粤北凡口铅锌矿床成矿预测[63]

    a.构造应力场模拟应力等值线图;b.成矿预测图

    Figure 8.  Metallogenic prediction of the Fankou lead-zinc deposit in northern Guangdong Province based on numerical simulation of metallogenic conditions

    表  1  3种数值模拟求解方法的原理及特点

    Table  1.   Principles and characteristics of three numerical simulation solutions

    求解方法 基本原理 优点 缺点
    有限单元法 将连续的求解域离散为有限个单元,把连续域中的无限自由度问题转变成离散域中的有限自由度问题 可以模拟各种复杂的几何形状结构;求解方法系统化、标准化,能够广泛应用;可求解非线性问题并进行多场耦合分析[44] 处理复杂问题较耗费计算资源;对无限求解域没有较好的处理方法[45-46]
    有限差分法 将有限个由离散点构成的网格来代替连续的定解区域,用有限差分方程组来近似地代替原微分方程和定解条件 计算方法简便灵活,在计算机上易于实现,通用性强;能利用结构网格的拓扑优势扩大模板,构造出高精度格式[10, 47] 仅适用规则区域及边界条件,求解线性、均质问题;前、后处理工作量较大[48]
    边界元法 不在连续体域内划分单元,只在定义域的边界上划分单元,再通过满足控制方程的函数去逼近边界条件 单元数量相对较少,数据准备简单;降低了计算复杂度;更适合处理开放空间内的物理问题[49-51] 不适合处理复杂边界条件的问题;不规则区域处理繁琐
    下载: 导出CSV

    表  2  FLAC2D/3D、ANSYS、ABAQUS与COMSOL Multiphysics在成矿动力学数值模拟中的应用实例及特点分析

    Table  2.   Application examples and characteristic analysis of FLAC2D/3D, ANSYS, ABAQUS and COMSOL Multiphysics in the numerical simulation of metallogenic dynamics

    软件名称 简介 优点 缺点 应用实例
    FLAC2D/3D 主要以岩石力学为基础,能够较好地模拟岩石变形和流体流动,分析变形、渗流、热传导等耦合作用 采用动态分析方法,“显示解”方案,求解过程占用内存小,运算时间短,效率较高。利于求解复杂、规模较大的问题 前处理能力较弱,构建复杂地质模型难度较大,使用其他软件构建时需要转化。缺少化学反应模拟的相关模块 文献[10, 48, 58-62]
    ANSYS 全面地覆盖了流体流动分析、热分析和结构应力分析等多场耦合分析 前处理功能强大,建模比较便捷,同时具备多数CAD软件接口;具备多种物理场优化功能,配合多场耦合分析;具有强大的结构静力分析功能 求解非线性问题的能力有限;化学反应模拟的功能较弱 文献[63-67]
    ABAQUS 集中于结构力学及相关领域的研究,同时具备热传导及流体运移的多场耦合分析 强大的非线性分析能力,可以解决其他软件不收敛的非线性问题;采用CAD方式建模和可视化视窗系统,有很好的人机交互体验 流体动力学模拟的能力较弱,缺少化学反应模拟的相关模块;多场耦合分析能力相对较弱 文献[68-72]
    COMSOL Multiphysics 拥有大量的预定义动力学模型,范围涵盖流体流动、热传导、结构力学、化学反应以及多场耦合模拟 完全开放的架构,用户可以根据需要轻松自由地定义所需要的专业偏微分方程;内嵌了丰富的CAD建模工具,同时支持第三方CAD导入功能;具有丰富的后处理功能 对复杂的非线性问题的求解的能力相对不足,容易出现不收敛问题 文献[44, 46, 73-77]
    下载: 导出CSV
  • [1] 於崇文, 岑况, 鲍征宇, 等. 热液成矿作用动力学[M]. 武汉: 中国地质大学出版社, 1993.

    Yu C W, Cen K, Bao Z Y, et al. Hydrothermal metallogenic dynamics[M]. Wuhan: China University of Geosciences Press, 1993(in Chinese).
    [2] 於崇文. 广义地球化学动力学[J]. 大自然探索, 1996, 15(4): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DZRT604.005.htm

    Yu C W. Generalized geochemical dynamics[J]. Nature Exploration, 1996, 15(4): 14-17(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZRT604.005.htm
    [3] 於崇文, 岑况, 鲍征宇, 等. 成矿作用动力学[M]. 北京: 地质出版社, 1998.

    Yu C W, Cen K, Bao Z Y, et al. Metallogenic dynamics[M]. Beijing: Geological Publishing House, 1998(in Chinese).
    [4] Hobbs B E, Zhang Y, Ord A, et al. Application of coupled deformation, fluid flow, thermal and chemical modeling to predictive mineral exploration[J]. Journal of Geochemical Exploration, 2000, 69: 505-509. http://www.sciencedirect.com/science/article/pii/S0375674200000996
    [5] Schardt C, Large R R. New insights into the genesis of volcanic-hosted massive sulfide deposits on the seafloor from numerical modeling studies[J]. Ore Geology Reviews, 2009, 35(3/4): 333-351. http://www.onacademic.com/detail/journal_1000035075245310_af5c.html
    [6] Ord A, Hobbs B E, Lester D R. The mechanics of hydrothermal systems: I. Ore systems as chemical reactors[J]. Ore Geology Reviews, 2012, 49: 1-44. doi: 10.1016/j.oregeorev.2012.08.003
    [7] Lamy-Chappuis B, Heinrich C A, Driesner T, et al. Mechanisms and patterns of magmatic fluid transport in cooling hydrous intrusions[J]. Earth and Planetary Science Letters, 2020, 535: 116111. doi: 10.1016/j.epsl.2020.116111
    [8] Norton D L, Dutrow B L. Complex behavior of magma-hydrothermal processes: Role of supercritical fluid[J]. Geochimica et Cosmochimica Acta, 2001, 65(21): 4009-4017. doi: 10.1016/S0016-7037(01)00728-1
    [9] 池国祥, 薛春纪. 成矿流体动力学的原理、研究方法及应用[J]. 地学前缘, 2011, 18(5): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201105001.htm

    Chi G X, Xue C J. Principles, research methods and applications of metallogenic fluid dynamics[J]. Earth Science Frontiers, 2011, 18(5): 1-18(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201105001.htm
    [10] Liu L M, Wan C L, Zhao C B, et al. Geodynamic constraints on orebody localization in the Anqing orefield, China: Computational modeling and facilitating predictive exploration of deep deposits[J]. Ore Geology Reviews, 2011, 43(1): 249-263. doi: 10.1016/j.oregeorev.2011.09.005
    [11] Li X H, Yuan F, Zhang M M, et al. 3D computational simulation-based mineral prospectivity modeling for exploration for concealed Fe-Cu skarntype mineralization within the Yueshan orefield, Anqing district, Anhui Province, China[J]. Ore Geology Reviews, 2019, 105: 1-17. doi: 10.1016/j.oregeorev.2018.12.003
    [12] Zou Y H, Liu Y, Pan Y, et al. Numerical simulation of hydrothermal mineralization associated with simplified chemical reactions in Kaerqueka polymetallic deposit, Qinghai, China[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1): 165-177. doi: 10.1016/S1003-6326(18)64925-8
    [13] Maximilian K, Weis P, Andersen C. The role of incremental magma chamber growth on ore formation in porphyry copper systems[J]. Earth and Planetary Science Letters, 2020, 552: 116584. doi: 10.1016/j.epsl.2020.116584
    [14] Zhao C B, Lin G, Hobbs B E, et al. Finite element modelling of reactive fluids mixing and mineralization in pore-fluid saturated hydrothermal/sedimentary basins[J]. Engineering Computations, 2002, 19(3): 364-387. doi: 10.1108/02644400210423990
    [15] Ingebritsen S E, Geiger S, Hurwitz S, et al. Numerical simulation of magmatic hydrothermal systems[J]. Reviews of Geophysics, 2010, 48: 1-33. doi: 10.1029/2009RG000287
    [16] Baleanu D, Golmankhaneh A K, Nigmatullin R, et al. Fractional Newtonian mechanics[J]. Central European Journal of Physics, 2010, 8(1): 120-125.
    [17] Tresca H. Mémoire sur l'écoulement des corps solides[J]. Mémoires Présentés Par Divers Savants À l'Académieroyale des Sciences, 1868, 18: 733-799.
    [18] Mises R V. Mechanik der festen Körper im plastisch-deformablen Zustand[J]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1913, 1: 582-592.
    [19] Ord A, Hobbs B E, Mühlhaus H B. Localization of deformation in rocks and metals[J]. Birkhäuser Verlag, Basel, 1992, 137(4): 337-366. http://ci.nii.ac.jp/ncid/BA27119813
    [20] Bates F S, Fredrickson G H. Block copolymer thermodynamics: Theory and experiment[J]. Annual Review of Physical Chemistry, 1990, 41(1): 525-557. doi: 10.1146/annurev.pc.41.100190.002521
    [21] Redlich O, Kwong J N. On the thermodynamics of solutions: An equation of state, fugacities of gaseous solutions[J]. Chemical Reviews, 1949, 44(1): 233-244. doi: 10.1021/cr60137a013
    [22] Panton R L. Incompressible flow[M]. Cambridge: John Wiley & Sons Inc., 1996.
    [23] Hughes T J R, Engel G, Mazzei L, et al. The continuous Galerkin method is locally conservative[J]. Journal of Computational Physics, 2000, 163(2): 467-488. doi: 10.1006/jcph.2000.6577
    [24] Bear J. Dynamics of fluids in porous media[M]. New York: American Elsevier Publishing Company, 1972.
    [25] 王经. 传热学与流体力学基础[M]. 上海: 上海交通大学出版社, 2007.

    Wang J. Fundamentals of heat transfer and hydrodynamics[M]. Shanghai: Shanghai Jiaotong University Press, 2007(in Chinese).
    [26] 张天孙, 卢改林. 传热学[M]. 北京: 中国电力出版社, 2006.

    Zhang T S, Lu G L. Heat transfer[M]. Beijing: China Electric Power Press, 2006(in Chinese).
    [27] Galdi G P. An introduction to the mathematical theory of the Navier-Stokes Equations[M]. New York: Springer, 2011.
    [28] COMSOL. COMSOL multiphysics: The platform for physics-based modeling and simulation[M]. Burlington: COMSOL Inc., 2013.
    [29] Whitaker S. Flow in porous media: I. A theoretical derivation of Darcy's law[J]. Transport in Porous Media, 1986, 1(1): 3-25. doi: 10.1007/BF01036523
    [30] Bird R B, Stewart W E, Lightfoot E B, et al. Transport phenomena[M]. New York: John Wiley & Sons Inc., 2002.
    [31] Wesselingh J A, Krishna R. Mass transfer in multicomponent mixtures[M]. Tallin: VSSD, 2000.
    [32] Heinrich C A, Walshe J L, Harrold B P. Chemical mass transfer modelling of ore-forming hydrothermal systems: Current practise and problems[J]. Ore Geology Reviews, 1996, 10(3/6): 319-338. http://www.onacademic.com/detail/journal_1000035005922810_4309.html
    [33] Liu Y, Dai T G. Numerical modeling of pore-fluid flow and heat transfer in the Fushan iron ore district, Hebei, China: Implications for hydrothermal mineralization[J]. Journal of Geochemical Exploration, 2014, 144: 115-127. doi: 10.1016/j.gexplo.2014.02.023
    [34] Zhang Y, Schaubs P M, Zhao C, et al. Fault-related dilation, permeability enhancement, fluid flow and mineral precipitation patterns: Numerical models[J]. Geological Society London Special Publications, 2008, 299(1): 239-255. doi: 10.1144/SP299.15
    [35] Zhao C B, Hobbs B E, Hornby P, et al. Numerical modelling of fluids mixing, heat transfer and non-equilibrium redox chemical reactions in fluid-saturated porous rocks[J]. International Journal for Numerical Methods in Engineering, 2005, 66(7): 1061-1078. doi: 10.1002/nme.1581/pdf
    [36] Zhao C B, Hobbs B E, Ord A. Theoretical and numerical investigation into roles of geofluid flow in ore forming systems: Integrated mass conservation and generic model approach[J]. Journal of Geochemical Exploration, 2010, 106(1/3): 251-260. http://www.sciencedirect.com/science/article/pii/S0375674209001241
    [37] Weis P. The dynamic interplay between saline fluid flow and rock permeability in magmatic-hydrothermal systems[J]. Geofluids, 2015, 15(1/2): 350-371. http://www.onacademic.com/detail/journal_1000039202745410_7c59.html
    [38] Yao Z S, James E. Mungall, flotation mechanism of sulphide melt on vapour bubbles in partially molten magmatic systems[J]. Earth and Planetary Science Letters, 2020, 542: 116298. doi: 10.1016/j.epsl.2020.116298
    [39] Ortoleva P J. Geochemical self-organization[M]. New York: Oxford University Press, 1994.
    [40] Steefel C, Lasaga C. A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems[J]. American Journal of Science, 1994, 294: 529-592. doi: 10.2475/ajs.294.5.529
    [41] 何文武. 热液系统流体输运化学反应耦合动力学综述[J]. 地质科技情报, 1995, 14(2): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ502.013.htm

    He W W. Review on coupled kinetics of fluid transport and chemical reaction in hydrothermal system[J]. Geological Science and Technology Information, 1995, 14(2): 75-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ502.013.htm
    [42] Lasaga A C. Kinetic theory in the earth sciences[M]. Princeton: Princeton University Press, 2014.
    [43] 谭凯旋, 谢焱石, 赵志忠, 等. 构造-流体-成矿体系的反应-输运-力学耦合模型和动力学模拟[J]. 地学前缘, 2001, 8(4): 311-321. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200104015.htm

    Tan K X, Xie Y S, Zhao Z Z, et al. Reaction transport mechanics coupling model and dynamic simulation of tectonic fluid metallogenic system[J]. Earth Science Frontiers, 2001, 8(4): 311-321(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200104015.htm
    [44] Nardi A, Idiart A, Trinchero P, et al. Interface COMSOL-PHREEQC(iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry[J]. Computers & Geosciences, 2014, 69: 10-21. http://www.sciencedirect.com/science/article/pii/S0098300414000880
    [45] Guo B L, Pu X K, Huang F H, et al. Fractional partial differential equations and their numerical solutions[M]. Beijing: Word Scientific Publishing Cooperation, 2015.
    [46] Hu X Y, Li X H, Yuan F, et al. Numerical simulation based targeting of the Magushan skarn Cu-Mo deposit, middle-lower Yangtze metallogenic belt, China[J]. Minerals, 2019, 9(10): 588-607. doi: 10.3390/min9100588
    [47] Ord A, Oliver N H S. Mechanical controls on fluid flow during regional metamorphism: Some numerical models[J]. Journal of Metamorphic Geology, 2010, 15(3): 345-359. http://www.onacademic.com/detail/journal_1000034680759310_e213.html
    [48] Zou Y H, Liu Y, Pan Y, et al. Numerical simulation of hydrothermal mineralization associated with simplified chemical reactions in Kaerqueka polymetallic deposit, Qinghai, China[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1): 165-177. doi: 10.1016/S1003-6326(18)64925-8
    [49] Zhang Y M, Qu W Z, Chen J Z. BEM analysis of thin structures for thermoelastic problems[J]. Engineering Analysis with Boundary Elements, 2013, 37(2): 441-452. doi: 10.1016/j.enganabound.2012.11.012
    [50] 姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2010.

    Yao Z H, Wang H T. Boundary element method[M]. Beijing: Higher Education Press, 2010(in Chinese).
    [51] 高效伟, 彭海峰, 杨恺, 等. 高等边界元法: 理论与程序[M]. 北京: 科学出版社, 2015.

    Gao X W, Peng H F, Yang K, et al. Advanced boundary element method: Theory and procedure[M]. Beijing: Science Press, 2015(in Chinese).
    [52] Cook R D, Malkus D S, Plesha M E. Concepts and applications of finite element analysis[M]. New York: John Wiley & Sons Inc., 1974.
    [53] 秦太验, 徐春晖, 周喆. 有限元法及其应用[M]. 北京: 中国农业大学出版社, 2011.

    Qin T Y, Xu C H, Zhou Z. Finite element method and its application[M]. Beijing: China Agricultural University Press, 2011(in Chinese).
    [54] 冯康, 张建中, 张绮霞, 等. 数值计算方法[M]. 北京: 国防工业出版社, 1978.

    Feng K, Zhang J Z, Zhang Q X, et al. Numerical calculation method[M]. Beijing: National Defense Industry Press, 1978(in Chinese).
    [55] 胡祖炽. 计算方法[M]. 北京: 高等教育出版社, 1959.

    Hu Z C. Calculation method[M]. Beijing: Higher Education Press, 1959(in Chinese).
    [56] Richtmyer R D. Difference methods for initial-value problems[M]. New York: Interscience Publishing Cooperation, 1957.
    [57] 饶寿期. 有限元法和边界元法基础[M]. 北京: 北京航空学院出版社, 1990.

    Rao S Q. Foundation of finite element method and boundary element method[M]. Beijing: Beijing Institute of Aeronautics Press, 1990(in Chinese).
    [58] Arnold J, Jacoby W R, Schmeling H, et al. Continental collision and the dynamic and thermal evolution of the Variscan orogenic crustal root-numerical models[J]. Journal of Geodynamics, 2001, 31(3): 273-291. doi: 10.1016/S0264-3707(00)00023-5
    [59] Sorjonen-Ward P, Zhang Y H, Zhao C B. Numerical modelling of orogenic processes and gold mineralisation in the southeastern part of the Yilgarn Craton, Western Australia[J]. Australian Journal of Earth Sciences, 2015, 49(6): 935-964.
    [60] Schaubs P M, Zhao C B. Numerical models of gold-deposit formation in the Bendigo-Ballarat Zone, Victoria[J]. Australian Journal of Earth Sciences, 2002, 49(6): 1077-1096. doi: 10.1046/j.1440-0952.2002.00964.x
    [61] Zou Y H, Liu Y, Dai T G, et al. Finite difference modeling of metallogenic processes in the Hutouya Pb-Zn Deposit, Qinghai, China: Implications for hydrothermal mineralization[J]. Ore Geology Reviews, 2017, 91: 463-476. doi: 10.1016/j.oregeorev.2017.09.008
    [62] Zhu J, Li Z, Lin G, et al. Numerical simulation of mylonitization and structural controls on fluid flow and mineralization of the Hetai Gold Deposit, west Guangdong, China[J]. Geofluids, 2014, 14(2): 221-233. doi: 10.1111/gfl.12069
    [63] 王语, 周永章, 肖凡, 等. 基于成矿条件数值模拟和支持向量机算法的深部成矿预测: 以粤北凡口铅锌矿为例[J]. 大地构造与成矿学, 2020, 44(2): 222-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202002007.htm

    Wang Y, Zhou Y Z, Xiao F, et al. Numerical metallogenic modeling and support vector machine methods applied to predict deep mineralization: A case study from the Fankou Pb-Zn ore deposit in northern Guangdong[J]. Geotectonicaet Metallogenia, 2020, 44(2): 222-230(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202002007.htm
    [64] Lobatskaya R M, Strelchenko I P, Dolgikh E S. Finite-element 3D modeling of stress patterns around a dipping fault[J]. Geoscience Frontiers, 2018, 9(5): 1555-1563. doi: 10.1016/j.gsf.2017.09.010
    [65] 汪新光, 张辉, 陈之贺, 等. 琼东南盆地陵水区中央峡谷水道沉积数值模拟[J]. 地质科技通报, 2021, 40(5): 42-53. doi: 10.19509/j.cnki.dzkq.2021.0026

    Wang X G, Zhang H, Chen Z H, et al. Numerical simulation of sedimentation of central canyon channel in Lingshui area, Qiongdongnan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 42-53(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0026
    [66] 李萧, 吴礼明, 王丙贤, 等. 渝东南地区龙马溪组构造应力场数值模拟及裂缝有利区预测[J]. 地质科技通报, 2021, 40(6): 24-31. doi: 10.19509/j.cnki.dzkq.2021.0603

    Li X, Wu L M, Wang B X, et al. Numerical simulation of tectonic stress field and prediction of fracture target in the Longmaxi Formation in southeast Chongqing[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 24-31(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0603
    [67] 廖秋林, 曾钱帮, 刘彤, 等. 基于ANSYS平台复杂地质体FLAC3D模型的自动生成[J]. 岩石力学与工程学报, 2005, 24(6): 1010-1013. doi: 10.3321/j.issn:1000-6915.2005.06.019

    Liao Q L, Zeng Q B, Liu T, et al. Automatic generation of FLAC3D model of complex geological body based on ANSYS platform[J]. Journal of Rock Mechanics and Engineering, 2005, 24(6): 1010-1013(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.06.019
    [68] Oliveira D, Arndt S, Cota R. Understanding mine behaviour through multi-scale modelling: A study of the Cuiaba mine, Brazil[C]//Anon. The ISRM Conference on Rock Mechanics for Natural Resources and Infrastructure: SBMR 2014. Lisbon Portugal: International Society for Rock Mechanics Press, 2014: 9-13.
    [69] Behyari M, Moghadam H H. Emplacement of silica veins at a brittle shear zone in the Ahar region, NW Iran: Insights from structural analysis, analogue and numerical modeling[J]. Journal of African Earth Sciences, 2018, 144: 90-103. doi: 10.1016/j.jafrearsci.2018.04.011
    [70] Poulet T, Karrech A, Regenauer-Lieb K, et al. Thermal-hydraulic-mechanical-chemical coupling with damage mechanics using ESCRIPT RT and ABAQUS[J]. Tectonophysics, 2012, 526/529: 124-132. doi: 10.1016/j.tecto.2011.12.005
    [71] Kurfess D, Heidbach O. CASQUS: A new simulation tool for coupled 3D finite element modeling of tectonic and surface processes based on ABAQUSTM and CASCADE[J]. Computers & Geosciences, 2009, 35(10): 1959-1967. http://www.researchgate.net/profile/Daniel_Kurfess/publication/222420540_CASQUS_A_new_simulation_tool_for_coupled_3D_finite_element_modeling_of_tectonic_and_surface_processes_based_on_ABAQUS_and_CASCADE/links/0deec53a88f56eaf6b000000
    [72] Conlin D, Gottardi R, Morra G, et al. Numerical modeling of fluid flow and heat transfers in fault systems[C/OL]//Anon. GSA South-Central Section Meeting. Colorado: The Geological Society of America Publications, 2016: 48-51.
    [73] Azad V, Li C, Verba C, et al. A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes[J]. Computers & Geosciences, 2016, 92: 79-89. doi: 10.1016/j.cageo.2016.04.002
    [74] Wissmeier L, Barry D. Simulation tool for variably saturated flow with comprehensive geochemical reactions in two- and three-dimensional domains[J]. Environmental Modelling & Software, 2011, 26(2): 210-218. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=AAC6743D1CE75297C8F40AE07585F5C7?doi=10.1.1.305.5715&rep=rep1&type=pdf
    [75] Butler S, Sinha G. Forward modeling of applied geophysics methods using Comsol and comparison with analytical and laboratory analog models[J]. Computers & Geosciences, 2012, 42: 168-176. http://homepage.usask.ca/~sab248/CAGEO_paper_2011.pdf
    [76] Fan X, Hu Z W, Xu S F, et al. Numerical simulation study on ore-forming factors of the Gejiu ore deposit, China[J]. Ore Geology Reviews, 2021, 135(11): 104209. http://www.sciencedirect.com/science/article/pii/S0169136821002353
    [77] 陈金龙, 罗文行, 窦斌, 等. 涿鹿盆地三维多裂隙地质模型地温场数值模拟[J]. 地质科技通报, 2021, 40(3): 22-33. doi: 10.19509/j.cnki.dzkq.2021.0317

    Chen J L, Luo W X, Dou B, et al. Numerical simulation of geothermal field of three-dimensional multi fracture geological model in Zhuolu Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 22-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0317
    [78] Weis P, Driesner T, Heinrich C A. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes[J]. Science, 2012, 338: 1613-1616. doi: 10.1126/science.1225009
    [79] 高志豪, 赵锐锐, 成建梅. 砂岩含水层CO2封存中考虑盐沉淀反馈作用的数值模拟: 以鄂尔多斯盆地为例[J]. 地质科技通报, 2022, 41(1): 269-277. doi: 10.19509/j.cnki.dzkq.2021.0073

    Gao Z H, Zhao R R, Cheng J M. Sandstone aquifer CO2 numerical simulation considering salt precipitation feedback in storage: taking Ordos Basin as an example[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 269-277(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0073
    [80] Arnold J, Jacoby W R, Schmeling H, et al. Continental collision and the dynamic and thermal evolution of the Variscan orogenic crustal root- numerical models[J]. Journal of Geodynamics, 2001, 31(3): 273-291. doi: 10.1016/S0264-3707(00)00023-5
    [81] 谢建华, 夏斌, 徐振华, 等. 数值模拟软件FLAC及其在地学应用简介[J]. 地质与勘探, 2005, 41(2): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT20050200F.htm

    Xie J H, Xia B, Xu Z H, et al. Numerical simulation software FLAC and its application in geosciences[J]. Geology and Exploration, 2005, 41(2): 77-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT20050200F.htm
    [82] Luo Z Q, Wu Y B, Liu X M, et al. FLAC3D modeling for complex geologic body based on SURPAC[J]. Rock and Soil Mechanics, 2008, 29(5): 1334-1338. doi: 10.3969/j.issn.1000-7598.2008.05.036
    [83] 李黎明. ANSYS有限元分析实用教程[M]. 北京: 清华大学出版社, 2005.

    Li L M. ANSYS finite element analysis practical course[M]. Beijing: Tsinghua University Press, 2005(in Chinese).
    [84] 石亦平, 周玉蓉. ABAQUS有限元分析实例详解[M]. 北京: 机械工业出版社, 2006.

    Shi Y P, Zhou Y R. ABAQUS finite element analysis example details[M]. Beijing: China Machine Press, 2006(in Chinese).
    [85] Candela P A, Holland H D. A mass transfer model for copper and molybdenum in magmatic hydrothermal system: The origin of porphyry-type ore deposits[J]. Economic Geology, 1986, 87(1): 1-19. http://www.onacademic.com/detail/journal_1000037233355310_ef83.html
    [86] Zhang Y H, Roberts P, Murphy B. Understanding regional structural controls on mineralization at the century deposit: A numerical modelling approach[J]. Journal of Geochemical Exploration, 2010, 106(1/3): 244-250. http://www.onacademic.com/detail/journal_1000035389280010_13b6.html
    [87] Zhang Y, Schaubs P M, Zhao C, et al. Fault-related dilation, permeability enhancement, fluid flow and mineral precipitation patterns: Numerical models[J]. Geological Society London Special Publications, 2008, 299(1): 239-255. doi: 10.1144/SP299.15
    [88] Afanasyev A A, Melnik O E. Numerical simulation of formation of a concentrated brine lens subject to magma chamber degassing[J]. Fluid Dynamics, 2017, 52: 416-423. doi: 10.1134/S0015462817030103
    [89] Afanasyev A A, Blundy J, Melnik O, et al. Formation of magmatic brine lenses via focussed fluid-flow beneath volcanoes[J]. Earth & Planetary Science Letters, 2018, 486: 119-128. http://www.nstl.gov.cn/paper_detail.html?id=f493f04dcc7f78e70368a0ee61d3cfa0
    [90] Alejandro R, Weis P, Magnall J M, et al. Hydrodynamic constraints on ore formation by basin-scale fluid flow at continental margins: Modelling Zn metallogenesis in the Devonian Selwyn Basin[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(6): e2020GC009453. http://www.researchgate.net/publication/352158763_Hydrodynamic_constraints_on_ore_formation_by_basin-scale_fluid_flow_at_continental_margins_Modelling_Zn_metallogenesis_in_the_Devonian_Selwyn_Basin
    [91] Zhao C B, Hobbs B E, Ord A. Convective and advective heat transfer in geological systems[M]. Berlin, Heidelberg: Springer, 2008.
    [92] Chelle-Michou C, Rottier B, Caricchi L, et al. Tempo of magma degassing and the genesis of porphyry copper deposits[J]. Scientific Reports, 2017, 7: 40566. doi: 10.1038/srep40566
    [93] Korges M, Weis P, Anderson C. The role of incremental magma chamber growth on ore formation in porphyry copper systems[J]. Earth and Planetary Science Letters, 2020, 552: 116584. doi: 10.1016/j.epsl.2020.116584
    [94] Liu Y, Dai T G, Qiu L, et al. Three-dimensional numerical simulation of ore-forming processes of the Fushan skarn iron deposit in Handan-Xingtai ore cluster, North China: Implication for tectonic effects on skarn-iron mineralization[J]. Journal of Geochemical Exploration, 2016, 169: 144-156. doi: 10.1016/j.gexplo.2016.07.022
    [95] 肖凡, 王恺其. 德兴斑岩铜矿床断裂与侵入体产状对成矿的控制作用: 从力-热-流三场耦合数值模拟结果分析[J]. 地学前缘, 2021, 28(3): 190-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103021.htm

    Xiao F, Wang K Q. Faults and intrusion occurrence control on copper mineralization in Dexing porphyry copper deposit in Jiangxi, China: A perspective from stress deformation-heat transfer-fluid flow coupled numerical modeling[J]. Earth Science Frontiers, 2021, 28(3): 190-207(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103021.htm
    [96] 贾蔡, 袁峰, 李晓晖, 等. 基于多源数据约束的成矿动力学模拟: 以宁芜盆地钟姑矿田典型矿床为例[J]. 地质科学, 2018, 53(4): 1327-1346.

    Jia C, Yuan F, Li X H, et al. Metallogenic dynamics simulation based on multi-source data constraints: Taking the typical deposit of Zhonggu Orefield in Ningwu Basin as an example[J]. Chinese Journal of Geology, 2018, 53(4): 1327-1346(in Chinese with English abstract).
    [97] 戴文强, 李晓晖, 袁峰, 等. 安庆铜矿床典型矽卡岩矿物形成过程数值模拟[J]. 合肥工业大学学报: 自然科学版, 2019, 42(3): 346-354. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201903008.htm

    Dai W Q, Li X H, Yuan F, et al. Numerical simulation of mineral formation process of typical skarn in Anqing Copper Deposit[J]. Journal of Hefei University of Technology: Natural Science Edition, 2019, 42(3): 346-354(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201903008.htm
    [98] Liu L M, Zhao Y, Sun T. 3D computational shape and cooling process-modeling of magmatic intrusion and its implication for genesis and exploration of intrusion related ore deposits: An example from the Yueshan intrusion in Anqing[J]. Tectonophysics, 2012, 526(2): 110-123. http://www.sciencedirect.com/science/article/pii/S0040195111003702
    [99] Murphy F C, Ord A, Hobbs B E, et al. Targeting stratiform Zn-Pb-Ag massive sulfide deposits in Ireland through numerical modeling of coupled deformation, thermal transport, and fluid flow[J]. Economic Geology, 2008, 103(7): 1437-1458. doi: 10.2113/gsecongeo.103.7.1437
    [100] Feltrin L, Mclellan J G, Oliver N. Modelling the giant, Zn-Pb-Ag Century Deposit, Queensland, Australia[J]. Computers & Geosciences, 2009, 35(1): 108-133. doi: 10.3969/j.issn.1001-3695.2009.01.034
    [101] Xie J, Cui Y A, Fanidi M, et al. Numerical modeling of marine self-potential from a seafloor hydrothermal ore deposit[J]. Pure and Applied Geophysics, 2021, 178: 1731-1744. doi: 10.1007/s00024-021-02720-3
    [102] Liu L M, Cao W, Liu H, et al. Applying benefits and avoiding pitfalls of 3D computational modeling-based machine learning prediction for exploration targeting: Lessons from two mines in the Tongling-Anqing district, eastern China[J/OL]. Ore Geology Review. https://doi.org/10.1016/j.oregeorev.2022.104712
    [103] Hu X Y, Chen Y H, Liu G X, et al. Numerical modeling of formation of the Maoping Pb-Zn Deposit within the Sichuan-Yunnan-Guizhou Metallogenic Province, southwestern China: Implications for the spatial distribution of concealed Pb mineralization and its controlling factors[J]. Ore Geology Reviews, 2022, 140: 104573. doi: 10.1016/j.oregeorev.2021.104573
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  776
  • PDF下载量:  425
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08

目录

    /

    返回文章
    返回