留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浸泡作用下碎石土剪切强度衰减规律及机理

王剑 应春业 胡新丽 徐锦宏 宗浩 梁劲 李岚星

王剑, 应春业, 胡新丽, 徐锦宏, 宗浩, 梁劲, 李岚星. 浸泡作用下碎石土剪切强度衰减规律及机理[J]. 地质科技通报, 2022, 41(6): 294-300. doi: 10.19509/j.cnki.dzkq.2022.0139
引用本文: 王剑, 应春业, 胡新丽, 徐锦宏, 宗浩, 梁劲, 李岚星. 浸泡作用下碎石土剪切强度衰减规律及机理[J]. 地质科技通报, 2022, 41(6): 294-300. doi: 10.19509/j.cnki.dzkq.2022.0139
Wang Jian, Ying Chunye, Hu Xinli, Xu Jinhong, Zong Hao, Liang Jin, Li Lanxin. Shear strength attenuation law and mechanism of gravel-soil under immersion[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 294-300. doi: 10.19509/j.cnki.dzkq.2022.0139
Citation: Wang Jian, Ying Chunye, Hu Xinli, Xu Jinhong, Zong Hao, Liang Jin, Li Lanxin. Shear strength attenuation law and mechanism of gravel-soil under immersion[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 294-300. doi: 10.19509/j.cnki.dzkq.2022.0139

浸泡作用下碎石土剪切强度衰减规律及机理

doi: 10.19509/j.cnki.dzkq.2022.0139
基金项目: 

重点国际(地区)合作与交流项目 42020104006

国家重点研发计划 2017YFC1501302

国家自然科学基金重点项目 41630643

详细信息
    作者简介:

    王剑(1998-), 男, 现正攻读地质工程专业硕士学位, 主要从事岩土工程数值模拟与地质灾害防治研究工作。E-mail: wangjian@cug.edu.cn

    通讯作者:

    胡新丽(1968-), 女, 教授, 博士生导师, 主要从事岩土工程数值模拟与稳定性评价等方面的研究工作。E-mail: huxinli@cug.edu.cn

  • 中图分类号: TU413.1

Shear strength attenuation law and mechanism of gravel-soil under immersion

  • 摘要:

    水库蓄水后, 滑坡体碎石土经受长时期的浸泡, 力学性质发生改变, 从而影响滑坡整体稳定性。为探究浸泡对碎石土力学性质的影响规律, 选取三峡库区马家沟滑坡后缘未经受长期浸泡作用的碎石土进行大型直剪试验, 分析了不同浸泡天数下碎石土的剪切力学性质。试验结果表明: 浸泡40 d后, 碎石土黏聚力下降幅度达39%, 内摩擦角下降幅度为8.3%;碎石土黏聚力在浸泡前期快速下降, 下降速率随浸泡天数增加而降低, 浸泡20 d后, 黏聚力基本达到稳定。为探究碎石土抗剪强度降低的原因和机理, 对粉质黏土(碎石土细粒成分)进行了三轴剪切试验、激光粒度分析及浸出液阳离子分析等试验, 揭示了碎石土抗剪强度的衰减机理为: 浸泡作用下, 碎石土中的粉质黏土发生矿物溶解、离子交换与吸附作用, 土体中大颗粒细化, 胶结作用减弱, 进而导致碎石土整体抗剪强度降低。研究结果对库区碎石土滑坡评价与治理具有一定的指导意义。

     

  • 图 1  研究区及取样位置

    Figure 1.  The study area and sampling locations

    图 2  试样粒径级配曲线

    Figure 2.  Cumulative percentage content curve of specimen size

    图 3  试验材料

    a.试验所用碎石;b.风干土体

    Figure 3.  Test material

    图 4  TAJ-300大型直剪试验仪

    Figure 4.  TAJ-300 large-scale-direct shear apparatus

    图 5  应变控制式三轴试验仪

    Figure 5.  Strain gauge triaxial apparatus

    图 6  碎石土剪应力-剪应变曲线(浸泡0 d)

    Figure 6.  Shear stress-shear strain curve of gravel-soil(immersed for 0 days)

    图 7  浸泡后碎石土抗剪强度变化曲线

    Figure 7.  Shear strength for gravel-soils after immersion

    图 8  粉质黏土应力-应变曲线(浸泡0 d)

    Figure 8.  Stress-strain curve of silty clay(immersed for 0 days)

    图 9  浸泡后粉质黏土剪切强度变化曲线

    Figure 9.  Damage strength variation curve for silty clay after immersion

    图 10  碎石土cφ衰减幅度

    Figure 10.  Percentage attenuation of c and φ of gravel-soil

    图 11  黏聚力变化曲线

    Figure 11.  Variation curves of cohesion

    图 12  内摩擦角变化曲线

    Figure 12.  Variation curves of internal friction angle

    图 13  浸泡液主要离子浓度变化

    Figure 13.  Changes in the concentration of major ions in immersed water

    图 14  粉质黏土粒径变化

    Figure 14.  Particle size variation of silty clay

    表  1  碎石土中粉质黏土的物理性质

    Table  1.   Physical properties of the fine-grained composition of gravelly soils

    天然重度/(g·cm-3) 相对密度 天然含水率/% 塑限/% 液限/%
    1.92 2.72 14.2 19.25 30.46
    下载: 导出CSV
  • [1] 孙一清, 李德营, 殷坤龙, 等. 三峡库区堆积层滑坡间歇性活动预测: 以白水河滑坡为例[J]. 地质科技情报, 2019, 38(5): 195-203. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905021.htm

    Sun Y Q, Li D Y, Yin K L, et al. Prediction of intermittent activity of mounded landslides in the Three Gorges Reservoir area: An example of the Baishui River landslide[J]. Geological Science and Technology Information, 2019, 38(5): 195-203(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905021.htm
    [2] Huang D, Gu D M, Song Y X, et al. Towards a complete understanding of the triggering mechanism of a large reactivated landslide in the Three Gorges Reservoir[J]. Engineering Geology, 2018, 238: 36-51. doi: 10.1016/j.enggeo.2018.03.008
    [3] Wang J, Su A, Xiang W, et al. New data and interpretations of the shallow and deep deformation of Huangtupo No. 1 riverside sliding mass during seasonal rainfall and water level fluctuation[J]. Landslides, 2016, 13(4): 795-804. doi: 10.1007/s10346-016-0712-8
    [4] Hu X, Zhang M, Sun M, et al. Deformation characteristics and failure mode of the Zhujiadian landslide in the Three Gorges Reservoir, China[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(1): 1-12. doi: 10.1007/s10064-013-0552-x
    [5] Tang H, Li C, Hu X, et al. Deformation response of the Huangtupo landslide to rainfall and the changing levels of the Three Gorges Reservoir[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(3): 933-942. doi: 10.1007/s10064-014-0671-z
    [6] He C, Hu X, Xu C, et al. Model test of the influence of cyclic water level fluctuations on a landslide[J]. Journal of Mountain Science, 2020, 17(1): 191-202. doi: 10.1007/s11629-019-5713-9
    [7] 郭子正, 殷坤龙, 唐扬, 等. 库水位下降及降雨作用下麻柳林滑坡稳定性评价与预测[J]. 地质科技情报, 2017, 36(4): 260-265. doi: 10.19509/j.cnki.dzkq.2017.0435

    Guo Z Z, Yin K L, Tang Y, et al. Evaluation and prediction of the stability of the Maliulin landslide under the effect of reservoir water level decline and rainfall[J]. Geological Science and Technology Information, 2017, 36(4): 260-265(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2017.0435
    [8] 唐朝晖, 孔涛, 柴波. 降雨作用碎石土堆积层滑坡变形规律[J]. 地质科技情报, 2012, 31(6): 168-173. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201206028.htm

    Tong Z H, Kong T, Chai B. Deformation patterns of landslides on gravel soil accumulations by rainfall[J]. Geological Science and Technology Information, 2012, 31(6): 168-173(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201206028.htm
    [9] Wen B, Ji B. Variation in residual strength of the large-scale landslides' slip zones in the Three Gorges Reservoir of China[M]. Cham: Springer International Publishing, 2019.
    [10] 唐晓松, 邓楚键, 郑颖人, 等. 三峡库区碎石土地基浸水试验研究[J]. 地下空间与工程学报, 2008, 4(2): 226-229. doi: 10.3969/j.issn.1673-0836.2008.02.006

    Tang X S, Deng C K, Zheng Y R, et al. Experimental study on the flooding of gravel foundation in Three Gorges Reservoir area[J]. Journal of Underground Space and Engineering, 2008, 4(2): 226-229(in Chinese with English abstract). doi: 10.3969/j.issn.1673-0836.2008.02.006
    [11] 汤连生. 水-土化学作用的力学效应及机理分析[J]. 中山大学学报: 自然科学版, 2000, 39(4): 104-109. doi: 10.3321/j.issn:0529-6579.2000.04.024

    Tang L S. Mechanical effects and mechanism analysis of water-soil chemistry[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2000, 39(4): 104-109(in Chinese with English abstract). doi: 10.3321/j.issn:0529-6579.2000.04.024
    [12] Venkatarama Reddy B V, Latha M S. Influence of soil grading on the characteristics of cement stabilised soil compacts[J]. Materials and Structures, 2014, 47(10): 1633-1645. doi: 10.1617/s11527-013-0142-1
    [13] Ham T, Nakata Y, Orense R P, et al. Influence of gravel on the compression characteristics of decomposed granite soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(11): 1574-1577. doi: 10.1061/(ASCE)GT.1943-5606.0000370
    [14] 唐建一, 徐东升, 刘华北. 含石量对土石混合体剪切特性的影响[J]. 岩土力学, 2018, 39(1): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801013.htm

    Tang J Y, Xu D S, Liu H B. Influence of stone content on the shear properties of soil-stone mixtures[J]. Geotechnics, 2018, 39(1): 93-102(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801013.htm
    [15] 江强强, 徐杨青, 王浩. 不同含石量条件下土石混合体剪切变形特征的试验研究[J]. 工程地质学报, 2020, 28(5): 951-958. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202005003.htm

    Jiang Q Q, Xu Y Q, Wang H. Experimental study on the shear deformation characteristics of soil-stone mixtures under different stone content conditions[J]. Journal of Engineering Geology, 2020, 28(5): 951-958(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202005003.htm
    [16] 邓华锋, 原先凡, 李建林, 等. 土石混合体直剪试验的破坏特征及抗剪强度取值方法研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 4065-4072. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2133.htm

    Deng H F, Yuan Y F, Li J L, et al. Study on the damage characteristics and shear strength value of soil-rock mixture in direct shear test[J]. Journal of Rock Mechanics and Engineering, 2013, 32(S2): 4065-4072(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2133.htm
    [17] Ying C, Hu X, Zhou C, et al. Analysis of chemo-mechanical behavior of silty soil under long-term immersion in saline reservoir water[J]. Bulletin of Engineering Geology and the Environment, 2020, 80(1): 627.
    [18] 丛璐. 侏罗系砂泥岩互层岩体流变特性及其对抗滑桩嵌固效果影响研究[D]. 武汉: 中国地质大学(武汉), 2018.

    Cong L. Study on the rheological characteristics of Jurassic sand mudstone interbedded rock and its influence on the effect of anti-slip pile embedment[D]. Wuhan: China University of Geosciences(Wuhan), 2018(in Chinese with English abstract).
    [19] 薛亚东, 岳磊, 李硕标. 含水率对土石混合体力学特性影响的试验研究[J]. 工程地质学报, 2015, 23(1): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201501005.htm

    Xue Y D, Yue L, Li S B. Experimental study on the effect of water content on the mechanical properties of soil-stone mixtures[J]. Journal of Engineering Geology, 2015, 23(1): 21-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201501005.htm
    [20] 俞隽, 孙洪浩, 郑霄阳. 块石含量对土石混合体剪切力学特性的影响[J]. 南通大学学报: 自然科学版, 2020, 19(3): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-NGZK202003011.htm

    Yu J, Sun H H, Zheng X Y. Effect of lumpy stone content on the shear mechanical properties of soil-stone mixtures[J]. Journal of Nantong University: Natural Science Edition, 2020, 19(3): 83-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NGZK202003011.htm
    [21] 聂良佐. 重塑土物理力学特性试验参数的影响因素分析[J]. 实验技术与管理, 2007, 24(12): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL200712011.htm

    Nie L Z. Analysis of the factors influencing the test parameters of physical and mechanical properties of remodeled soils[J]. Experimental Technology and Management, 2007, 24(12): 30-34(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL200712011.htm
    [22] 聂良佐. 原状土结构损伤重塑后强度、变形和渗透性变化机理研究[J]. 岩土工程界, 2008, 11(7): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200807029.htm

    Nie L Z. Study on the mechanism of strength, deformation and permeability changes after structural damage remodeling of in-situ soils[J]. Geotechnical Engineering, 2008, 11(7): 23-25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200807029.htm
    [23] 曹荣国, 范建华, 马中骏, 等. 原状粉质黏土抗剪强度的恢复试验研究[J]. 路基工程, 2016(4): 143-145. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201604034.htm

    Cao R G, Fan J H, Ma C J, et al. Experimental study on the recovery of shear strength of in-situ powdered clay[J]. Roadbed Engineering, 2016(4): 143-145(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201604034.htm
    [24] 中华人民共和国建设部. 土工试验方法标准: GB/T50123-2019[S]. 北京: 中国计划出版社, 2019: 22-26.

    Ministry of Construction of the People's Republic of China. Standard for Shijiazhuang test methods: GB/T50123-2019[S]. Beijing: China Planning Press, 2019: 22-26(in Chinese with English abstract).
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  633
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-25

目录

    /

    返回文章
    返回