留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同含油、含水饱和度致密砂岩真三轴力学特征

许鹏祥 陈向东 刘钊 程鑫 屈怡倩 李秋实 马春晓 吴汉宁

许鹏祥, 陈向东, 刘钊, 程鑫, 屈怡倩, 李秋实, 马春晓, 吴汉宁. 不同含油、含水饱和度致密砂岩真三轴力学特征[J]. 地质科技通报, 2023, 42(1): 70-77. doi: 10.19509/j.cnki.dzkq.2022.0146
引用本文: 许鹏祥, 陈向东, 刘钊, 程鑫, 屈怡倩, 李秋实, 马春晓, 吴汉宁. 不同含油、含水饱和度致密砂岩真三轴力学特征[J]. 地质科技通报, 2023, 42(1): 70-77. doi: 10.19509/j.cnki.dzkq.2022.0146
Xu Pengxiang, Chen Xiangdong, Liu Zhao, Cheng Xin, Qu Yiqian, Li Qiushi, Ma Chunxiao, Wu Hanning. True triaxial mechanical characteristics of tight sandstone with different oil and water staturation[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 70-77. doi: 10.19509/j.cnki.dzkq.2022.0146
Citation: Xu Pengxiang, Chen Xiangdong, Liu Zhao, Cheng Xin, Qu Yiqian, Li Qiushi, Ma Chunxiao, Wu Hanning. True triaxial mechanical characteristics of tight sandstone with different oil and water staturation[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 70-77. doi: 10.19509/j.cnki.dzkq.2022.0146

不同含油、含水饱和度致密砂岩真三轴力学特征

doi: 10.19509/j.cnki.dzkq.2022.0146
基金项目: 

国家自然科学基金项目 41304049

详细信息
    作者简介:

    许鹏祥(1996—  ),男,现正攻读地质工程专业硕士学位,主要从事岩石物理、石油工程研究工作。E-mail: 13453852343@163.com

    通讯作者:

    程鑫(1982—  ),男,副教授,主要从事沉积盆地构造学、油气地质与勘探、油气勘探综合分析等方面的教学与科研工作。E-mail: chengxin@nwu.edu.cn

  • 中图分类号: TU452

True triaxial mechanical characteristics of tight sandstone with different oil and water staturation

  • 摘要:

    致密砂岩储层中水、石油或天然气等流体赋存可能会对致密砂岩的力学特征产生影响。选取鄂尔多斯盆地蟠龙地区延长组致密砂岩,利用YSZS-2000型多功能电液伺服岩石真三轴试验机对不同含油和含水饱和度致密砂岩力学特征进行了研究。结果表明:①含油性对砂岩的峰值应力和弹性模量产生弱化作用,表现为峰值应力和弹性模量随着含油饱和度的增大而减小,“准饱和”时峰值应力可下降5.35%,弹性模量可下降11.38%;②含水砂岩根据其吸水特性曲线分为Pa型与Pb型,含水性对砂岩的峰值应力产生弱化作用,饱和时Pa型砂岩峰值应力可下降11.58%,Pb型砂岩峰值应力可下降15.95%;③观察实验后浸油砂岩内部结构发现,油集中分布于砂岩矿物间裂隙,对破裂面产生润滑作用从而降低了砂岩的承载力。本研究成果可以对致密油气的开发提供可靠依据。

     

  • 图 1  YSZS-2000多功能电液伺服岩石真三轴试验装置图

    Figure 1.  YSZS-2000 multi-functional electro-hydraulic servo rock true triaxial test device diagram

    图 2  砂岩浸油特性曲线图

    Figure 2.  Oil soaking characteristic curve of sandstone

    图 3  砂岩浸水特征曲线

    Figure 3.  Water soaking characteristic curve of sandstone

    图 4  砂岩不同含油饱和度轴向应力σ1-轴向应变ε1关系曲线

    Figure 4.  Relationship curve between axial stress σ1-axial strain ε1 of sandstone with different oil saturations

    图 5  Pa型与Pb型砂岩不同含水饱和度轴向应力σ1-轴向应变ε1关系曲线

    Figure 5.  Relationship curves of axial stress σ1-axial strain ε1 for Pa and Pb type sandstones with different water saturation degrees

    图 6  峰值应力σ1、弹性模量与砂岩/含水饱和度S0关系曲线(S0=63.9%)

    a.光学显微镜下未压裂砂岩内部结构; b.光学显微镜下压裂后砂岩内部结构; c.荧光显微镜下未压裂砂岩内部结构; d.荧光显微镜下压裂后砂岩内部结构

    Figure 6.  Relationship curves of peak stress σ1, elastic modulus and sandstone oil water saturation S0

    图 7  光学显微镜下砂岩浸油后内部结构图

    Figure 7.  Internal structure of sandstone after oil soaking under an optical microscope

    图 8  含油砂岩内部结构示意图

    a.未经压裂浸油砂岩内部结构示意图; b.经压裂后浸油砂岩内部结构示意图

    Figure 8.  Schematic diagram of the internal structure of oil-bearing sandstone

    表  1  砂岩样品基本参数

    Table  1.   Basic parameters of sandstone samples

    样品编号 密度/(g·cm-3) 面孔率/% 单轴抗压强度/MPa
    P1 2.259 1 2.3 35.480 7
    P2 2.264 9 2.5 35.206 9
    P3 2.282 2 2.7 34.987 7
    平均值 2.268 7 2.5 35.225 1
    下载: 导出CSV

    表  2  天然砂岩烘干质量变化

    Table  2.   Drying quality change table of natural sandstone

    样品编号 天然质量/g 烘干后质量/g 质量/g 天然含水率/%
    P1 2 234.8 2 224.8 10.0 0.45
    P2 2 233.4 2 223.2 10.2 0.46
    P3 2 237.9 2 228.0 9.9 0.44
    平均值 2 235.4 2 225.3 10.0 0.45
    下载: 导出CSV
  • [1] 孙龙德, 邹才能, 贾爱林, 等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019, 46(6): 1015-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906002.htm

    Sun L D, Zou C N, Jia A L, et al. Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1015-1026 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906002.htm
    [2] 邹才能, 翟光明, 张光亚, 等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1): 13-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501003.htm

    Zou C N, Zhai G M, Zhang G Y, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501003.htm
    [3] 仝少凯, 高德利. 水力压裂基础研究进展及发展建议[J]. 石油钻采工艺, 2019, 41(1): 101-115. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201901017.htm

    Tong S K, Gao D L. Advances and suggestions on basic research of hydraulic fracturing[J]. Oil Drilling & Production Technology, 2019, 41(1): 101-115 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201901017.htm
    [4] 邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001001.htm

    Zou C N, Pan S Q, Jing Z H, et al. Shale oil and gas revolution and its influence[J]. Acta Petrologica Sinica, 2020, 41(1): 1-12 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001001.htm
    [5] 陈乐勇. 低渗透储层岩体压裂裂纹扩展机理研究[D]. 成都: 西南石油大学, 2015.

    Chen L Y. Study on fracture propagation mechanism of rock mass in low permeability reservoir[D]. Chengdu: Southwest Petroleum University, 2015 (in Chinese with English abstract).
    [6] 李铭辉. 真三轴应力条件下储层岩石的多物理场耦合响应特性研究[D]. 重庆: 重庆大学, 2016.

    Li M H. Multi-physical field coupling response characteristics of reservoir rocks under true triaxial stress[D]. Chongqing: Chongqing University, 2016 (in Chinese with English abstract).
    [7] 秦朝. 三轴围压条件下岩石力学性质的实验研究[D]. 成都: 西南石油大学, 2014.

    Qin Z. Experimental study on mechanical properties of rock undertriaxial confining pressure[D]. Chengdu: Southwest Petroleum University, 2014 (in Chinese with English abstract).
    [8] 王友新. 高应力条件下大理岩真三轴卸载力学特性研究[D]. 昆明: 昆明理工大学, 2017.

    Wang Y X. Study on mechanical properties of true triaxial unloading of marble under high stress[D]. Kunming: Kunming University of Science and Technology, 2017 (in Chinese with English abstract).
    [9] 林伯韬, 史璨, 庄丽, 等. 基于真三轴实验研究超稠油储集层压裂裂缝扩展规律[J]. 石油勘探与开发, 2020, 47(3): 608-616. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003019.htm

    Lin B T, Shi C, Zhuang L, et al. Study on fracture propagation behavior in ultra-heavy oil reservoir beased on true triaxial experiments[J]. Petroleum Exploration and Development, 2020, 47(3): 608-616 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003019.htm
    [10] Arash J, Mohammad E N. Rock physics analysis and modelling using well logs and seismic data for characterising a heterogeneous sandstone reservoir in SW of Iran[J]. Exploration Geophysics, 2021, 52(4): 446-461. doi: 10.1080/08123985.2020.1836956
    [11] Marek K. Recent advances in studies of the strength of rocks under true triaxial compression Condition[J]. Arch. Min. Sci., 2013, 58(4): 1177-1200.
    [12] Dhara S, Misra N L, Aggarwal S K, et al. Determinations of low atomic number elements in real uranium oxide samples using vacuum chamber total reflection x-ray fluorescence[J]. X-Ray Spectrometry, 2014, 43(2): 108-111. doi: 10.1002/xrs.2523
    [13] He M C, Miao J L, Feng J L. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions[J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(2): 286-298.
    [14] Han X, Wang S X, Tang G Y, et al. Coupled effects of pressure and frequency on velocities of tight sandstones saturated with fluids: Measurements and rock physics modelling[J]. Geophysical Journal International, 2021, 226(2): 1308-1321. doi: 10.1093/gji/ggab157
    [15] Pan X P, Zhang G Z, Chen J J. The construction of shale rock physics model and brittleness prediction for high-porosity shale gas-bearing reservoir[J]. Petroleum Science, 2020(prepublish):
    [16] Li G L, Li G F, Wang Y Z, et al. A rock physics model for estimating elastic properties of Upper Ordovician Lower Silurian mudrocks in the Sichuan Basin, China[J]. Engineering Geology, 2020, 266: 105460. doi: 10.1016/j.enggeo.2019.105460
    [17] Zhang L, Ba J, Carcione J M. A rock physics model to determine the pore microstructure of cracked porous rocks[J]. Geophysical Journal International, 2020, 223(1): 622-631. doi: 10.1093/gji/ggaa327
    [18] 施维成. 粗粒土真三轴试验与本构模型研究[D]. 南京: 河海大学, 2008.

    Shi W C, Study on true triaxial test and constitutive model of coarse-grained soil[D]. Nanjing: Hohai University, 2008 (in Chinese with English abstract).
    [19] 王四巍. 单轴和三轴应力下塑性混凝土性能研究[D]. 郑州: 郑州大学, 2010.

    Wang S W. Study on the performance of plastic concrete under uniaxial and triaxial stress[D]. Zhengzhou: Zhengzhou University, 2010 (in Chinese with English abstract).
    [20] 扈萍, 黄茂松, 马少坤, 等. 粉细砂的真三轴试验与强度特性[J]. 岩土力学, 2011, 32(2): 465-470. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201102029.htm

    Hu P, Huang M S, Ma S K, et al. True triaxial test and strength characteristics of silty sand[J]. Rock and Soil Mechanics, 2011, 32(2): 465-470 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201102029.htm
    [21] 杨利国, 骆亚生, 王瑞瑞. 不同中主应力下压实黄土变形特性的真三轴试验研究[J]. 水文地质工程地质, 2016, 43(5): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201605011.htm

    Yang L G, Luo Y S, Wang R R. True triaxial test on deformation characteristics of compacted loess with different intermediate principal stresses[J]. Hydrogeology and Engineering Geology, 2016, 43(5): 76-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201605011.htm
    [22] 杨继华, 刘汉东. 岩石强度和变形真三轴试验研究[J]. 华北水利水电学院学报, 2007(3): 66-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL200703021.htm

    Yang J H, Liu H D. True triaxial experimental study on rock strength and deformation[J]. Journal of North China Institute of Water Resources and Electric Power, 2007(3): 66-68 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL200703021.htm
    [23] Colb Ac K P, Wiid B L. The influence of moisture content on the compressive strength of rocks[C]. Proc. Rock Mech. Symp. Tronto, 1965.
    [24] Vásárhelyi B, Ván P. Influence of water content on the strength of rock[J]. Engineering Geology, 2005, 84(1): 70-74.
    [25] 周翠英, 彭泽英, 尚伟, 等. 论岩土工程中水-岩相互作用研究的焦点问题: 特殊软岩的力学变异性[J]. 岩土力学, 2002, 23(1): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200201027.htm

    Zhou C Y, Peng Z Y, Shang W, et al. On the key problem of the water-rock interaction in geoengineering mechanical variability of special weak rocks and some development trends[J]. Rock and Soil Mechanics, 2002, 23(1): 124-128 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200201027.htm
    [26] 王东, 王丁, 韩小刚, 等. 侧向变形控制下的灰岩破坏规律及其峰后本构关系[J]. 煤炭学报, 2010, 35(12): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201012015.htm

    Wang D, Wang D, Han X G, et al. Limestone failure law and post-failure constitutive relation in the control of lateral deformation[J]. Journal of China Coal Society, 2010, 35(12): 76-81 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201012015.htm
    [27] 李男, 徐辉, 胡斌. 干燥与饱水状态下砂岩的剪切蠕变特性研究[J]. 岩土力学, 2012, 33(2): 439-443. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201202021.htm

    Li N, Xu H, Hu B. Shear creep characteristics of sandstone under dry and saturated states[J]. Rock and Soil Mechanics, 2012, 33(2): 439-443 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201202021.htm
    [28] 曹洋兵, 陈玉华, 张朋, 等. 单轴压缩条件下不同含水率黑云母二长花岗岩破坏特征与机制[J]. 地质科技通报, 2021, 40(3): 163-172. doi: 10.19509/j.cnki.dzkq.2021.0308

    Cao Y B, Chen Y H, Zhang P, et al. Failure characteristics and mechanism of biotite monzogranite with different water content under uniaxial compression[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 163-172. doi: 10.19509/j.cnki.dzkq.2021.0308
    [29] 杨勇. 低渗透岩石水力压力裂纹扩展的CT扫描[J]. 采矿与安全工程学报, 2013, 30(5): 739-743. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201305018.htm

    Yang Y. CT scanning of hydraulic pressure crack propagation in low permeability rock[J]. Journal of Mining and Safety Engineering, 2013, 30(5): 739-743 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201305018.htm
    [30] 尹光志, 李贺, 鲜学福, 等. 工程应力变化对岩石强度特性影响的试验研究[J]. 岩土工程学报, 1987, 9(2): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198702002.htm

    Yin G Z, Li H, Xian X F, et al. Experimental study on the influence of engineering stress change on rock strength characteristics[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(2): 20-27 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198702002.htm
    [31] 扈萍, 黄茂松, 马少坤, 等. 粉细砂的真三轴试验与强度特性[J]. 岩土力学, 2011, 32(2): 465-470. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201102029.htm

    Hu P, Huang M S, Ma S K, et al. True triaxial test and strength characteristics of silty sand[J]. Rock and Soil Mechanics, 2011, 32(2): 465-470 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201102029.htm
    [32] 贺洲. 低渗透储层孔隙流体压力预测方法及应用[J]. 化工设计通讯, 2019, 45(12): 247-248. https://www.cnki.com.cn/Article/CJFDTOTAL-WGTX201912165.htm

    He Z. Prediction method and application of pore fluid pressure in low permeability reservoir[J]. Chemical Design Communication, 2019, 45(12): 247-248 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WGTX201912165.htm
    [33] 蔡生娟, 李宏兵, 潘豪杰. 基于岩石物理模板的孔隙度非敏感流体因子构建方法及应用[J]. 地球物理学进展, 2020, 35(3): 932-939. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202003016.htm

    Cai S J, Li H B, Pan H J. Construction method of porosity non-sensitive fluid factor based on rock physical template and its application[J]. Progress in Geophysics(in Chinese), 2020, 35(3): 932-939 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202003016.htm
    [34] 陈昱霏. 真三轴应力条件下页岩力学特征及渗透机理研究[D]. 重庆: 重庆大学. 2018.

    Chen Y F. Study on mechanical characteristics and permeability mechanism of shale under true triaxial stress[D]. Chongqing: Chongqing University, 2018 (in Chinese with English abstract).
    [35] 高辉, 朱耿博仑, 王泫懿, 等. 鄂尔多斯盆地延长组致密砂岩储层微观孔喉特征差异及其成因[J]. 石油与天然气地质, 2019, 40(2): 302-312. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201902010.htm

    Gao H, Zhug B L, Wang X Y, et al. Microscopic pore throat characteristics and its origin in tight sandstone reservoirs of Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2019, 40(2): 302-312 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201902010.htm
    [36] Martin C D, Chandler N A. The progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 1994, 31(6): 643-659.
    [37] 朱泽奇, 盛谦, 冷先伦, 等. 三峡花岗岩起裂机制研究[J]. 岩石力学与工程学报, 2007, 26(12): 2570-2575. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200712027.htm

    Zhu Z Q, Sheng Q, Leng X L, et al. Study on crack initiation mechanism of Three Gorges granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2570-2575 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200712027.htm
    [38] 汪斌, 朱杰兵, 严鹏, 等. 大理岩损伤强度的识别及基于损伤控制的参数演化规律[J]. 岩石力学与工程学报, 2012, 31(增刊2): 3967-3973. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S2069.htm

    Wang B, Zhu J B, Yan P, et al. Identification of damage strength and parameter evolution of marble based on damage control[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3967-3973 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S2069.htm
    [39] 王宇, 李晓, 武艳芳, 等. 脆性岩石起裂应力水平与脆性指标关系探讨[J]. 岩石力学与工程学报, 2014, 33(2): 264-275. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402008.htm

    Wang Y, Li X, Wu Y F, et al. Research on relationship between crack initiation stress level and brittleness index for brittle rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 264-275 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402008.htm
    [40] 胡少华, 陈益峰, 周创兵. 北山花岗岩渗透特性试验研究与细观力学分析[J]. 岩石力学与工程学报, 2014, 33(11): 2200-2209. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201411005.htm

    Hu S H, Chen Y F, Zhou C B. Experimental study and meso-mechanical analysis of permeability characteristics of Beishan granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2200-2209 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201411005.htm
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  467
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07

目录

    /

    返回文章
    返回