留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湖北省阳新县基岩滑坡变形因子及其破坏模式

王健 晏鄂川 赵松 李广 杜毅 陈胡昕 张立鹏

王健, 晏鄂川, 赵松, 李广, 杜毅, 陈胡昕, 张立鹏. 湖北省阳新县基岩滑坡变形因子及其破坏模式[J]. 地质科技通报, 2022, 41(6): 223-232. doi: 10.19509/j.cnki.dzkq.2022.0147
引用本文: 王健, 晏鄂川, 赵松, 李广, 杜毅, 陈胡昕, 张立鹏. 湖北省阳新县基岩滑坡变形因子及其破坏模式[J]. 地质科技通报, 2022, 41(6): 223-232. doi: 10.19509/j.cnki.dzkq.2022.0147
Wang Jian, Yan Echuan, Zhao Song, Li Guang, Du Yi, Chen Huxin, Zhang Lipeng. Deformation factors and failure modes of bedrock landslides in Yangxin County, Hubei Province[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 223-232. doi: 10.19509/j.cnki.dzkq.2022.0147
Citation: Wang Jian, Yan Echuan, Zhao Song, Li Guang, Du Yi, Chen Huxin, Zhang Lipeng. Deformation factors and failure modes of bedrock landslides in Yangxin County, Hubei Province[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 223-232. doi: 10.19509/j.cnki.dzkq.2022.0147

湖北省阳新县基岩滑坡变形因子及其破坏模式

doi: 10.19509/j.cnki.dzkq.2022.0147
基金项目: 

国家自然科学基金项目 41972289

详细信息
    作者简介:

    王健(1995-), 男, 现正攻读土木水利专业硕士学位, 主要从事岩土体稳定性与滑坡防治研究工作。E-mail: wangji0510@qq.com

    通讯作者:

    晏鄂川(1969-), 男, 教授, 博士生导师, 主要从事岩土体稳定性评价和保护设计研究工作。E-mail: yecyec6970@163.com

  • 中图分类号: P642

Deformation factors and failure modes of bedrock landslides in Yangxin County, Hubei Province

  • 摘要:

    斜坡变形受众多因子综合控制, 不同因子的敏感性与作用规律在变形过程中差异明显。以湖北省阳新县顺层基岩滑坡为研究对象, 通过正交试验结合离散元数值模拟的方法, 研究多个影响因子对应顺层滑坡变形的敏感性并确立主导因素, 随后基于响应面拟合主导因素与滑坡不同部位变形程度间的量化关系, 揭示主导因素交互作用对滑坡变形破坏模式的影响规律。结果表明, 在研究区内坡度与岩层倾角分别为影响顺层滑坡变形的主导与次主导因素, 滑坡的变形破坏模式受控于二者的交互作用。在中-陡倾顺层滑坡中, 当坡度小于岩层倾角时, 滑坡变形主要集中在坡顶, 且变形程度随岩层倾角的增加而增大, 表现出滑移-弯曲的变形破坏模式; 在缓倾顺层滑坡中, 当坡度大于岩层倾角时, 滑坡坡脚位移较坡顶显著, 其坡脚变形程度随坡度的增加而增大, 以滑移-拉裂变形为主。研究成果可为该类滑坡的防治工作提供参考。

     

  • 图 1  湖北省阳新县岩质滑坡分布图

    Figure 1.  Distribution map of bedding rock landslides in Yangxin County, Hubei Province

    图 2  各模拟方案总位移变化曲线簇(1~16为方案序号,下同)

    Figure 2.  Variation curve cluster of the total displacement of each simulation scheme

    图 3  坡度大于倾角组总位移变化曲线簇

    Figure 3.  Total displacement curve cluster with a dip greater than slope

    图 4  倾角大于坡度总位移监测变化曲线簇

    Figure 4.  Total displacement curve cluster with a dip greater than slope

    图 5  坡顶水平位移响应作用规律云图

    Figure 5.  Action pattern of the horizontal displacement response at the slope top

    图 6  坡脚水平位移响应作用规律云图

    Figure 6.  Action pattern of the horizontal displacement response at the slope toe

    图 7  倾角大于坡度组水平位移云图

    Figure 7.  Horizontal displacement chart of the group with angle of rock greater than the slope

    图 8  倾角小于坡度组水平位移云图

    Figure 8.  Horizontal displacement chart of the group with angle of rock less than the slope

    图 9  滑移-弯曲破坏模式演化示意图

    Figure 9.  Schematic diagram of slip-rupture deformation failure modes

    图 10  斜坡剖面图

    Figure 10.  Profile of the slope

    图 11  滑移-拉裂破坏模式演化示意图

    Figure 11.  Schematic diagram of slip-bending deformation failure modes

    图 12  老街滑坡剖面图

    Figure 12.  Profile of the Laojie landslide

    表  1  岩体物理力学参数

    Table  1.   Physical and mechanical parameters of the rock mass

    岩层类型 密度/(kg·m-3) 内聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 泊松比
    泥质粉砂岩 2 480 0.8 38 0.2 0.25
    结构面 抗拉强度/MPa 内聚力/MPa 内摩擦角/(°) 法向刚度/(kPa·m-1) 切向刚度/(kPa·m-1)
    层面 0.02 14 15 150 150
    节理面 0.016 9 15 120 120
    下载: 导出CSV

    表  2  影响因子范围区间

    Table  2.   Range of impact factors

    影响因子 范围区间
    斜坡高度/m 15~65
    岩层倾角/(°) 15~65
    斜坡坡度/(°) 15~75
    弹性模量/GPa 2.5~5.5
    层厚/m 0.5~2.0
    下载: 导出CSV

    表  3  试验因素与水平设计

    Table  3.   Experimental factors and level design

    因素 水平
    坡高/m 15 30 45 60
    坡度/(°) 30 45 60 75
    倾角/(°) 15 30 45 60
    层厚/m 0.5 1 1.5 2
    弹性模量/GPa 2.5 3.5 4.5 5.5
    下载: 导出CSV

    表  4  正交表L16(45)

    Table  4.   Orthogonal table L16(45)

    方案序号 坡高/m 坡度/(°) 倾角/(°) 层厚/m 弹性模量 总位移/m
    1 1 1 1 1 1 4.7×10-3
    2 1 2 2 2 2 0.37
    3 1 3 3 3 3 1.03
    4 1 4 4 4 4 1.18
    5 2 1 2 3 4 1.34×10-2
    6 2 2 1 4 3 7.5×10-3
    7 2 3 4 1 2 2.54×10-2
    8 2 4 3 2 1 0.46
    9 3 1 3 4 2 2.8×10-3
    10 3 2 4 3 1 9.44×10-2
    11 3 3 1 2 4 4×10-3
    12 3 4 2 1 3 0.63
    13 4 1 4 2 3 0.05
    14 4 2 3 1 4 0.12
    15 4 3 2 4 1 0.22
    16 4 4 1 3 2 0.12
    极差R 0.52 0.58 0.37 0.16 0.32
    下载: 导出CSV

    表  4  响应面试验变量与水平

    Table  4.   Response surface test variables and levels

    因素 水平
    -1 0 1
    坡度 30 52.5 75
    坡高 15 37.5 60
    倾角 15 37.5 60
    下载: 导出CSV

    表  5  响应面试验设计与结果

    Table  5.   Response surface test design and results

    方案 坡高/m 坡度/(°) 倾角/(°) 坡顶水平位移/m 坡脚水平位移/m
    1 15 30 37.5 7×10-2 1×10-2
    2 60 30 37.5 1.13×10-1 2.8×10-2
    3 15 75 37.5 1.2×10-1 5.17×10-1
    4 60 75 37.5 5.3×10-3 2.97×10-2
    5 15 52.5 15 4×10-3 1.3×10-2
    6 60 52.5 15 2×10-3 1.28×10-2
    7 15 52.5 60 1.7×10-2 4.1×10-3
    8 60 52.5 60 5×10-2 6.5×10-2
    9 37.5 30 15 2×10-3 6×10-3
    10 37.5 75 15 4×10-3 1.1×10-2
    11 37.5 30 60 6.25×10-1 5×10-3
    12 37.5 75 60 1.5×10-1 8×10-1
    13 37.5 52.5 37.5 6×10-1 9.5×10-1
    14 37.5 52.5 37.5 6×10-1 9.5×10-1
    15 37.5 52.5 37.5 6×10-1 9.5×10-1
    下载: 导出CSV

    表  6  坡顶最大水平位移响应面模型的方差分析

    Table  6.   Variance analysis of the response surface model at the slope top

    来源 平方和 自由度 均方和 F P
    模型 0.87 9 0.096 8 5.29 0.040 6
    A-坡高 0.000 1 1 0.000 1 0.003 4 0.955 8
    B-坡度 0.027 3 1 0.027 3 1.49 0.275 9
    C-倾角 0.086 1 1 0.086 1 4.71 0.082 2
    AB 0.012 2 1 0.0122 0.665 8 0.451 6
    AC 3×10-4 1 3×10-4 0.016 7 0.902 1
    BC 0.0056 9 1 0.056 9 3.11 0.138 1
    A2 0.472 8 1 0.472 8 25.85 0.003 8
    B2 0.120 7 1 0.120 7 6.60 0.050 1
    C2 0.185 1 1 0.185 1 10.12 0.024 5
    R2=0.905 RAdj2=0.864 RPred2=0.858
    下载: 导出CSV

    表  7  坡脚最大水平位移响应面模型的方差分析

    Table  7.   Variance analysis of the response surface model at the slope toe

    来源 平方和 自由度 均方和 F P
    模型 2.25 9 0.2501 11.04 0.008 3
    A-坡高 0.02 1 0.02 0.880 7 0.391 1
    B-坡度 0.216 8 1 0.216 8 9.57 0.027 1
    C-倾角 0.086 5 1 0.086 5 3.82 0.108 1
    AB 0.066 1 1 0.006 61 2.92 0.148 3
    AC 9×10-4 1 9×10-4 0.041 2 0.847 1
    BC 0.156 3 1 0.156 3 6.90 0.046 7
    A2 0.900 4 1 0.900 4 39.73 0.001 5
    B2 0.36 1 0.36 15.88 0.010 5
    C2 0.690 5 1 0.690 5 30.47 0.002 7
    R2=0.952 1 RAdj2=0.923 RPred2=0.905
    下载: 导出CSV
  • [1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm

    Huang R Q. Large-scale landslides and their sliding mechanisms in China since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 433-454(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm
    [2] Hu Q J, Shi R D N, Zheng L N. Progressive failure mechanism of a large bedding slope with atrain-softening interface[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(1): 443-454.
    [3] 王飞, 唐辉明, 宁奕冰, 等. 基于演化过程的互层斜坡深层倾倒稳定性评价[J]. 地质科技情报, 2019, 38(5): 186-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905020.htm

    Wang F, Tang H M, Ning Y B, et al. Stability analysis of deep-seated toppling in interlayered rock slopes based on evolution process[J]. Geological Science and Technology Information, 2019, 38(5): 192-200 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905020.htm
    [4] 丁戈媛, 胡新丽. 大奔流顺层岩质滑坡溃屈型破坏力学机制研究[J]. 地质科技通报, 2020, 39(2): 186-190. doi: 10.19509/j.cnki.dzkq.2020.0220

    Ding G Y, Hu X L. Mechanical mechanism of bucking failure of Dabenliu consequent bedding rockslide[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 186-190(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0220
    [5] 杜毅, 晏鄂川, 肖尚德, 等. 恩施盆地典型红砂岩斜坡破坏机理试验研究[J]. 地质科技情报, 2018, 37(1): 196-203. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801027.htm

    Du Y, Yan E C, Xiao S D, et al. Experimental study on failure mechanism of typical red sandstone slope in Enshi Basin[J]. Geological Science and Technology Information, 2018, 37(1): 196-203(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801027.htm
    [6] 朱冬雪, 许强, 李松林. 三峡库区大型-特大型层状岩质滑坡成因模式及地质特征分析[J]. 地质科技通报, 2020, 39(2): 158-167. doi: 10.19509/j.cnki.dzkq.2020.0217

    Zhu D X, Xu Q, Li S L. Gentic types and geological features of large scale and extra-large scale layerd landslides in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 158-167(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0217
    [7] 王兰生. 意大利瓦依昂水库滑坡考察[J]. 中国地质灾害与防治学报, 2007, 41(3): 158-159. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200703034.htm

    Wang L S. Investigation of the landslide of the Vaiang Reservoir in Italy[J]. Chinese Journal of Geological Hazards and Prevention, 2007, 41(3): 158-159(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200703034.htm
    [8] Zhao LH, Li D J, Tan H H, Cheng X, Zuo S. Characteristics of failure area and failure mechanism of a bedding rockslide in Libo County, Guizhou, China[J]. Landslides, 2019, 16(7): 1367-1374.
    [9] 张倬元, 王士天, 王兰生, 等. 工程地质分析原理[M]. 北京: 地质出版社, 2016.

    Zhang Z Y, Wang S T, Wang L S. Principle of engineering geology analysis[M]. Beijing: Geological Publishing House, 2016(in Chinese).
    [10] 邹宗兴, 唐辉明, 熊承仁. 大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析[J]. 岩石力学与工程学报, 2012, 31(11): 2222-2231. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211009.htm

    Zou Z X, Tang H M, Xiong C R. Geomechanical model of progressive failure for large consequent bedding rockslide and its stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2222-2231(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211009.htm
    [11] 李云鹏, 杨治林, 王芝银. 顺层边坡岩体结构稳定性位移理论[J]. 岩石力学与工程学报, 2000, 19(6): 747-750. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200006012.htm

    Li Y P, Yang Z L, Wang Z Y. Displacement theory of structure stability for rock mass bedding slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(6): 747-750(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200006012.htm
    [12] Chi E A, Tao T J, Zhao M S. Failure mode analysis of bedding rock slope affected by rock mass structural plane[J]. Applied Mechanics and Materials, 2014, 602/605: 594-597.
    [13] Saito M. Research on forecasting the time of occurrence of slope failure[J]. Soils and Foundations, 1969, 17(2): 29-38.
    [14] Mason R L, Gunst R F, Hess J L. Statistical design and experiments with applications to engineering and science[M]. New York: John Wiley and Sons Publication, 2003.
    [15] Freire L, Carmezim M J, Ferreira M G S, et al. The passive behaviors of aisi 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study[J]. Electrochimica Acta, 2010, 55(21): 61-74.
    [16] Du Y, Yan E C, Gao X. Identification of the main control factors and failure modes for the failure of Baiyuzui landslide control project[J]. Geotechnical and Geological Engineering, 2021(2): 1-18.
    [17] 蔡跃, 三谷泰浩, 江琦哲郎. 反倾层状岩体边坡稳定性的数值分析[J]. 岩石力学与工程学报, 2008, 27(12): 2517-2522. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812022.htm

    Cai Y, Yasuhiro M, Tetsuro E. Numerical analysis of stability for an antidip stratified rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2517-2522(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812022.htm
    [18] 蔡静森. 均质等厚反倾层状岩质边坡倾倒变形机理研究[D]. 武汉: 中国地质大学(武汉), 2013.

    Cai J S. Mechanism research of toppling deformation for homo-geneous equal thickness anti-dip layered rock slopes[D]. Wuhan: China University of Geosciences(Wuhan), 2013(in Chinese with English abstract).
    [19] 黄少平, 晏鄂川, 尹晓萌, 等. 不同临空条件的层状反倾岩质边坡倾倒变形几何特征参数影响规律[J]. 地质科技通报, 2021, 40(1): 159-165. doi: 10.19509/j.cnki.dzkq.2021.0111

    Huang S P, Yan E C, Yin X M, et al. Action law geometrical characteristic parameters in the anti-dip rock slopes under different free face condition[J]. Bulletin of Geological Science and Technology, 2020, 40(1): 159-165(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0111
    [20] Cambio D, Hicks D D, Moffitt K, et al. Back-analysis of the Bingham Canyon South Wall: A quasi-static complex slope movement mechanism[J]. Rock Mechanics and Rock Engineering, 2019, 52(3): 4953-4977.
    [21] 龙建辉, 赵邦强, 李坤. 顺层岩质边坡多级滑动模式及成因机理分析[J]. 中国矿业大学学报, 2016, 45(6): 1156-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201606011.htm

    Long J H, Zhao B Q, Li K. Multistage sliding mode and formation mechanism of bedding rock slope[J]. Journal of China University of Mining and Technology, 2016, 45(6): 1156-1163(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201606011.htm
    [22] 张令非, 陈忠辉, 唐岳松. 含弱层边坡分区滑动破坏模式及演化规律研究[J]. 岩石力学与工程学报, 2021, 40(6): 1145-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106007.htm

    Zhang L F, Chen Z H, Tang Y S. Study on regional slideing failure modes and evolution regularity of slopes with weak layers[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1145-1154(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106007.htm
    [23] 蒋良潍, 黄润秋. 层状结构岩体顺层斜坡滑移-弯曲失稳计算探讨[J]. 山地学报, 2006, 24(1): 88-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200601011.htm

    Jiang L W, Huang R Q. Studies on estimation of sliding-bending rupture of bedded rock slopes[J]. Journal of Mountain Science, 2006, 24(1): 88-94(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200601011.htm
    [24] 章涛. 顺层岩质边坡滑移-拉裂破坏机理研究[D]. 重庆: 重庆交通大学, 2019.

    Zhang T. Study on the mechanism of sliding and cracking failure of the rock slope in the smooth layer[D]. Chongqing: Chongqing Jiaotong University, 2019(in Chinese with English abstract).
  • 加载中
图(12) / 表(8)
计量
  • 文章访问数:  516
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-15

目录

    /

    返回文章
    返回