留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同布锚方式对锚索抗滑桩受力与变形影响的物理模型试验研究

王贵华 李长冬 贺鑫 张永权 姚文敏 宋成彬 张华伟

王贵华, 李长冬, 贺鑫, 张永权, 姚文敏, 宋成彬, 张华伟. 不同布锚方式对锚索抗滑桩受力与变形影响的物理模型试验研究[J]. 地质科技通报, 2022, 41(6): 262-277. doi: 10.19509/j.cnki.dzkq.2022.0151
引用本文: 王贵华, 李长冬, 贺鑫, 张永权, 姚文敏, 宋成彬, 张华伟. 不同布锚方式对锚索抗滑桩受力与变形影响的物理模型试验研究[J]. 地质科技通报, 2022, 41(6): 262-277. doi: 10.19509/j.cnki.dzkq.2022.0151
Wang Guihua, Li Changdong, He Xin, Zhang Yongquan, Yao Wenmin, Song Chengbin, Zhang Huawei. Physical model test on the effect of different anchoring methods on the mechanical and deformation characteristics of anchored slide-resistant piles[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 262-277. doi: 10.19509/j.cnki.dzkq.2022.0151
Citation: Wang Guihua, Li Changdong, He Xin, Zhang Yongquan, Yao Wenmin, Song Chengbin, Zhang Huawei. Physical model test on the effect of different anchoring methods on the mechanical and deformation characteristics of anchored slide-resistant piles[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 262-277. doi: 10.19509/j.cnki.dzkq.2022.0151

不同布锚方式对锚索抗滑桩受力与变形影响的物理模型试验研究

doi: 10.19509/j.cnki.dzkq.2022.0151
基金项目: 

国家重点研发计划课题 2017YFC1501304

国家自然科学基金优秀青年科学基金项目 41922055

详细信息
    作者简介:

    王贵华(1991-), 男, 现正攻读地质工程专业博士学位, 主要从事地质灾害优化防控方面的研究工作。E-mail: guihuawang@cug.edu.cn

    通讯作者:

    李长冬(1981-), 男, 教授, 博士生导师, 主要从事于工程地质和岩土工程方面的教学与研究工作。E-mail: lichangdong@cug.edu.cn

  • 中图分类号: P642.22

Physical model test on the effect of different anchoring methods on the mechanical and deformation characteristics of anchored slide-resistant piles

  • 摘要:

    锚索抗滑桩是滑坡的主要支护结构之一。目前, 软硬相间地层条件下锚索抗滑桩的受力与变形特征尚缺乏系统研究。以软硬相间地层为地质背景, 基于自主研发的柔性测斜仪和自动加载系统, 构建了锚索抗滑桩加固滑坡物理模型试验系统, 开展了锚索抗滑桩加固滑坡的物理模型试验, 揭示了推力不断增加过程中抗滑桩、锚索和滑体的变形与受力特征, 对比研究了布锚方式对桩-锚受力与变形的影响规律, 通过数值模拟的方法分析了软硬相间地层对锚索抗滑桩的影响机理, 并以双锚点抗滑桩为例进行了理论分析。研究结果表明: ①在滑坡-锚索抗滑桩体系中, 桩身各点位移和滑体深部位移均随桩身深度的增加而减小, 滑体后部位移速率大于中部, 且滑体位移速率大于桩身位移速率; ②单锚点抗滑桩的桩-锚推力分担比经历了4个阶段的变化, 趋于稳定时桩-锚推力分担比约为9∶1, 锚索拉力作用下桩身弯矩呈"S"型分布, 正负弯矩非对称; ③锚固角度越大, 锚索拉力的增速越大, 不同锚固角度对桩身内力值的影响主要体现在受荷段; ④多锚点抗滑桩结构的锚索分担更多的推力, 与单锚点抗滑桩相比, 双锚点与三锚点抗滑桩的最大桩身弯矩分别减小了22.41%和40.55%;⑤与均质地层相比, 软硬相间地层中软、硬岩交界面处基岩应力发生突变, 不同软岩厚度比和桩底是否嵌入硬岩, 均对锚索拉力和桩-岩之间的相互作用有不同程度的影响; 其次, 双锚点抗滑桩内力的理论值与试验结果较为接近。本研究成果可为软硬相间地层中锚索抗滑桩加固滑坡工程的优化设计提供依据。

     

  • 图 1  锚索抗滑桩与滑坡体系模型试验总体设计

    Figure 1.  Overall design of model tests for a system of anchored slide-resistant piles and landslides

    图 2  桩-锚和传感器布置示意图(单位: cm)

    Figure 2.  Arrangement of pile-anchor and sensors

    图 3  嵌固段传感器布置示意图

    Figure 3.  Schematic diagram of the sensors layout in the embedded section

    图 4  柔性测斜仪设备

    Figure 4.  Flexible inclinometer

    图 5  试验材料图

    a.滑体材料; b.基岩材料; c.桩-锚材料

    Figure 5.  Material for model tests

    图 6  试验工况

    a, b, c分别为锚固角度20°、30°和40°的单锚点抗滑桩; d, e分别为锚固角度30°的双锚点抗滑桩和三锚点抗滑桩

    Figure 6.  Tests configurations

    图 7  工况A桩-锚和滑体的变形实景图

    a.桩-锚的实际变形;b, c.坡前和坡顶面产生的裂隙

    Figure 7.  Actual deformation of pile-anchor and sliding mass for working condition A

    图 8  工况A滑体深部位移

    Figure 8.  Deep displacement of the sliding mass for working condition A

    图 9  工况A的桩身位移(a)、桩身弯矩(b)和桩身剪力(c)

    Figure 9.  Horizontal displacement(a), bending moment(b), and shear force(c) of the pile for working condition A

    图 10  工况A加载值及桩后推力值变化曲线

    Figure 10.  Curves of thrust behind the pile and loading force for working condition A

    图 11  工况A锚索拉力和桩-锚推力分担比随时间变化曲线

    Figure 11.  Curves of anchor cable tension and sharing ratio for working condition A

    图 12  锚索拉力和桩-锚分担比变化曲线

    Figure 12.  Curve of anchor cable tension and sharing ratio

    图 13  工况B的桩身位移(a)、桩身弯矩(b)和桩身剪力(c)

    Figure 13.  Horizontal displacement(a), bending moment(b), and shear force(c) of the pile for working condition B

    图 14  工况C的桩身位移(a)、桩身弯矩(b)和桩身剪力(c)

    Figure 14.  Horizontal displacement(a), bending moment(b), and shear force(c) of the pile for working condition C

    图 15  锚索拉力和桩-锚推力分担比变化曲线

    Figure 15.  Curve of anchor cable tension and sharing ratio

    图 16  工况D的桩身位移(a)、桩身弯矩(b)和桩身剪力(c)

    Figure 16.  Horizontal displacement(a), bending moment(b), and shear force(c) of the pile for working condition D

    图 17  工况E的桩身位移(a)、桩身弯矩(b)和桩身剪力(c)

    Figure 17.  Horizontal displacement(a), bending moment(b), and shear force(c) of the pile for working condition E

    图 18  不同基岩组合的数值模型

    Figure 18.  Numerical models for different bedrock combinations

    图 19  模型试验(图 6中的工况B)与数值模型(图 18-a)的计算结果对比图

    Figure 19.  Comparison of the model test(working condition B in Fig. 6) and calculation results of the numerical model(Fig. 18-a)

    图 20  不同基岩组合中抗滑桩嵌固段基岩应力分布图(a~f对应表 2中工况a~f)

    Figure 20.  Stress contour map of the rock on the side of the embedded section in different bedrock combinations

    图 21  不同模型中嵌固段桩前与桩后基岩应力分布曲线(a~f对应表 2中工况a~f)

    Figure 21.  Stress distribution curve of rock on both sides of the embedded section of pile in different bedrock combinations

    图 22  不同模型中的桩身弯矩对比

    Figure 22.  Comparison of bending moments in different numerical models

    图 23  土压力分布集度

    Figure 23.  Distribution concentration of soil pressure

    图 24  试验数据与计算结果对比

    Figure 24.  Comparison between test data and calculation results

    表  1  材料的相似比和力学参数

    Table  1.   Similar ratio and mechanical parameters of materials

    名称 密度/(g·cm-3) 弹性模量/GPa 黏聚力/kPa 内摩擦角/(°) 抗拉强度/MPa
    相似比 1 100 1 1 100
    滑体 1.97 0.018 26.08 11.65 /
    软岩 2.16 0.15 39.1 16.3 /
    硬岩 2.21 0.45 110.5 30.0 /
    下载: 导出CSV

    表  2  锚索拉力统计(数值模拟结果)

    Table  2.   Statistical analysis of the axial force of the anchor cable(numerical simulation results)

    工况 a.软硬相间(w=1/3) b.全软岩 c.全硬岩 d.软硬相间(w=1/2) e.软硬相间(w=1/4) f.上硬下软(w= 2/3)
    锚索拉力值/N 152 195 141 157 143 178
    基岩顶部应力最大值/kPa -213 -176 -248 -191 -218 -242
    桩底后侧应力最大值/kPa -99 -111 -52 -105 -90 -110
    最大弯矩值/(N·m) 182 221 162 203 164 210
    下载: 导出CSV

    表  3  计算参数统计(双锚点抗滑桩)

    Table  3.   Statistical for calculation parameters(double-anchored pile)

    名称 参数值 名称 参数值 名称 参数值
    H 0.66 m l1 0.40 m R2 2.8×103 kPa
    L 0.16 m l2 0.35 m E 3×105 kPa
    h1 0.45 m s1 0.65 m K1 1.21×104 kN/m3
    h2 0.21 m s2 0.55 m K2 1.02×104 kN/m3
    a 0.05 m Eg 1.3×103 kPa K3 1.21×104 kN/m3
    b 0.075 m As 2.83×10-5 m2 / /
    θ 30° R1 6.6×103 kPa / /
    注:H为桩长;L为桩间距;h1为桩身受荷段长度;h2为桩身嵌固段长度;a×b为桩截面尺寸;E为桩身弹性模量;Ki为第i层岩性的水平地基系数,通过与岩石抗压强度的拟合公式进行换算[1]Eg为锚索弹性模量;As为锚索截面积;li为第i排锚索锚点至滑面的距离;si为第i排锚索自由段长度,θ为锚索锚固角度; R1R2分别为硬岩和软岩单轴抗压强度
    下载: 导出CSV
  • [1] 李长冬, 唐辉明, 胡新丽, 等. 三峡库区侏罗系地层滑坡中抗滑桩布设和结构优化研究[M]. 武汉: 中国地质大学出版社, 2015.

    Li C D, Tang H M, Hu X L, et al. Plane arrangement and structure optimization of stabilizing piles for landslides developing in Jurassic strata of Three Gorges Reservoir Region[M]. Wuhan: China university of Geosciences Press, 2015(in Chinese).
    [2] Li C D, Fu Z Y, Wang Y, et al. Susceptibility of reservoir-induced landslides and strategies for increasing the slope stability in the Three Gorges Reservoir Area: Zigui Basin as an example[J]. Engineering Geology, 2019, 261: 105279. doi: 10.1016/j.enggeo.2019.105279
    [3] 姚文敏. 基于水致岩体劣化的三峡库区侏罗系地层水库滑坡抗滑桩嵌固机理及其优化研究[D]. 武汉: 中国地质大学(武汉), 2020.

    Yao W M. Embedded mechanism and optimization of stabilizing piles for reservoir landslides in Jurassic strata of Three Gorges Reservoir region based upon water induced deterioration of rock mass[D]. Wuhan: China University of Geosciences(Wuhan), 2020(in Chinese with English abstract).
    [4] 彭书林, 高大水. 马槽岭滑坡拉锚抗滑桩支挡及新型无黏结锚索应用[C]//佚名. 湖北省三峡库区地质灾害防治工程论文集. 武汉: 湖北人民出版社, 2005: 186-192.

    Peng S L, Gao D S. The anchor peg support and stick-free anchor cable in macaoling landslide[C]//Anon. A collection of academic theses on prevention and control of geohazards in the Three Gorges Reservoir of Hubei Province. Wuhan: Hubei People's Press, 2005: 186-192(in Chinese).
    [5] 曹志民, 李予红, 王润涛. 锚索抗滑桩在张家坝滑坡治理工程中的施工技术[C]//佚名. 湖北省三峡库区地质灾害防治工程论文集. 武汉: 湖北人民出版社, 2005: 417-425.

    Cao Z M, Li Y H, Wang R T. The anchor cable piles in the Zhangjiaba project[C]//Anon. A collection of academic theses on prevention and control of geohazards in the Three Gorges Reservoir of Hubei Province. Wuhan: Hubei People's Press, 2005: 417-425(in Chinese).
    [6] 李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108

    Li C D, Long J J, Jiang X H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108
    [7] 王贵华, 李长冬, 陈文强, 等. 复合多层滑床条件下锚索抗滑桩受力特征研究[J]. 岩石力学与工程学报, 2019, 38(11): 2219-2230. doi: 10.13722/j.cnki.jrme.2019.0349

    Wang G H, Li C D, Chen W Q, et al. Mechanical characteristics of anchored slide-resistant pile under the condition of composite multilayer sliding bed[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2219-2230(in Chinese with English abstract). doi: 10.13722/j.cnki.jrme.2019.0349
    [8] Yao W M, Li C D, Zhan H B, et al. Multiscale study of physical and mechanical properties of sandstone in Three Gorges Reservoir region subjected to cyclic wetting-drying of Yangtze River water[J]. Rock Mechanics and Rock Engineering, 2020, 53(1): 2215-2231.
    [9] 刘彬, 聂德新, 张勇, 等. 软硬相间层状复杂岩体综合变形模量原位试验研究[J]. 工程地质学报, 2010, 18(4): 538-542. doi: 10.3969/j.issn.1004-9665.2010.04.014

    Liu B, Nie D X, Zhang Y, et al. In-situ testing of integrated deformation modulus for complicated rock mass of soft and hard interlayers[J]. Journal of Engineering Geology, 2010, 18(4): 538-542(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2010.04.014
    [10] Tang H M, Zhang Y Q, Li C D, et al. Development and application of in situ plate-loading test apparatus for landslide-stabilizing pile holes[J]. Geotechnical Testing Journal, 2016, 39(5): 757-768.
    [11] 梁德明, 李长冬, 雍睿, 等. 基于参数劣化的软硬相间顺层边坡稳定性研究[J]. 岩土力学, 2014, 35(增刊1): 195-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S1027.htm

    Liang D M, Li C D, Yong R, et al. Study of stability of soft-hard interbedded slope based on degradation of strength parameters[J]. Rock and Soil Mechanics, 2014, 35(S1): 195-202(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S1027.htm
    [12] 雷国平, 唐辉明, 李长冬, 等. 抗滑桩嵌固段设计修正方法研究[J]. 岩石力学与工程学报, 2013, 32(3): 605-614. doi: 10.3969/j.issn.1000-6915.2013.03.019

    Lei G P, Tang H M, Li C D, et al. Study of improved design method of anti-slide pile socketed segment[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3): 605-614(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2013.03.019
    [13] 詹红志, 王亮清, 王昌硕, 等. 考虑滑床不同地基系数的抗滑桩受力特征研究[J]. 岩土力学, 2014, 35(增刊2): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2035.htm

    Zhan H Z, Wang L Q, Wang C S, et al. Study of mechanical characters of anti-sliding piles considering different foundation coefficients of sliding bed[J]. Rock and Soil Mechanics, 2014, 35(S2): 250-256(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2035.htm
    [14] 董曼曼, 王亮清, 葛云峰, 等. 考虑滑床复合倾斜岩体综合地基系数的抗滑桩受力特征研究简述[J]. 岩土力学, 2017, 38(10): 3000-3008. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710030.htm

    Dong M M, Wang L Q, Ge Y F, et al. Mechanical characteristics of anti-sliding pile considering comprehensive foundation coefficient of sliding bed on composite inclined rock mass[J]. Rock and Soil Mechanics, 2017, 38(10): 3000-3008(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710030.htm
    [15] Li C D, Wu J J, Tang H M, et al. Model testing of the response of stabilizing piles in landslides with upper hard and lower weak bedrock[J]. Engineering Geology, 2016, 204: 65-76. doi: 10.1016/j.enggeo.2016.02.002
    [16] 毛明章, 邹先锋. 预应力锚索抗滑桩协同工作机理[J]. 地下空间与工程学报, 2010, 6(2): 1552-1555. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2010S2012.htm

    Mao M Z, Zou X F. Research on mechanism of collaborative working of prestressed anchor anti-slide piles[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(2): 1552-1555(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2010S2012.htm
    [17] 周德培, 王建松. 预应力锚索桩内力的一种计算方法[J]. 岩石力学与工程学报, 2002, 21(2): 247-250. doi: 10.3321/j.issn:1000-6915.2002.02.019

    Zhou D P, Wang J S. Design method of retaining pile with prestressed cable[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(2): 247-250(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2002.02.019
    [18] Qu H L, Li R F, Zhang J J, et al. A novel approach for seismic design of anchored sheet pile wall[J]. Tehnicki Vjesnik-Technical Gazette, 2016, 23(2): 455-463.
    [19] 桂树强, 殷坤龙, 罗平. 预应力锚索抗滑桩治理滑坡应用研究[J]. 岩土力学, 2003, 24(增刊2): 239-243. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2054.htm

    Gui S Q, Yin K L, Luo P. A study on applications of stabilizing piles with prestressed anchor cables in landslides remediation works[J]. Rock and Soil Mechanics, 2003, 24(S2): 239-243(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2054.htm
    [20] Qiu H Z, Kong J M, Wang R C. Dynamic active earth pressures of the retaining piles with anchors under vehicle loads[J]. Shock and Vibration, 2016(3): 1-8.
    [21] 刘小丽, 张占民, 周德培. 预应力锚索抗滑桩的改进计算方法[J]. 岩石力学与工程学报, 2004, 23(15): 2568-2568. doi: 10.3321/j.issn:1000-6915.2004.15.017

    Liu X L, Zhang Z M, Zhou D P. Improved method for computing anti-sliding pile with prestressed anchoring cable[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(15): 2568-2568(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2004.15.017
    [22] Huang C, Ren W Z, Kong L W. New mathematical modelling of stabilizing pile with prestressed tieback anchors[J]. Mathematical Problems in Engineering, 2013(10): 561-576.
    [23] Zhang S F, Li C, Qi H, et al. Soil arch evolution characteristics and parametric analysis of slope anchored anti-slide pile[J]. KSCE Journal of Civil Engineering, 2021, 11(25): 4121-4132.
    [24] Yang Z P, Li S Q, Yu Y, et al. Study on the variation characteristics of the anchor cable prestress based on field monitoring in a foundation pit[J]. Arabian Journal of Geosciences, 2020, 13(23): 1269.
    [25] 李玉瑞, 吴红刚, 赖天文, 等. 分层填筑对桩-锚-加筋土组合结构加固边坡试验研究[J]. 中国地质灾害与防治学报, 2018, 29(6): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201806011.htm

    Li Y R, Wu H G, Lai T W, et al. Effects of layered filling on slope reinforcement with pile-anchor-reinforced soil composite structure[J]. The Chinese Journal of Geological and Control, 2018, 29(6): 83-91(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201806011.htm
    [26] 吴红刚, 牌立芳, 赖天文, 等. 山区机场高填方边坡桩-锚-加筋土组合结构协同工作性能优化研究[J]. 岩石力学与工程学报, 2019, 38(7): 1498-1511. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907018.htm

    Wu H G, Pai L F, Lai T W, et al. Study on cooperative performance of pile-anchor-reinforced soil combined retaining structure of high fill slopes in mountainous airports[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1498-1511(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907018.htm
    [27] 牌立芳, 吴红刚, 马惠民. 地震作用下多锚点桩加固土质边坡的抗震优化对比振动台试验研究[J]. 岩石力学与工程学报, 2021, 40(4): 751-765. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104009.htm

    Pai L F, Wu H G, Ma H M. Shaking table test study on seismic optimization comparisons of multi-anchor piles for strengthening soil slopes under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 751-765(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104009.htm
    [28] Ma N, Wu H, Ma H, et al. Examining dynamic soil pressures and the effectiveness of different pile structures inside reinforced slopes using shaking table tests[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 293-303.
    [29] 叶海林, 郑颖人, 李安洪, 等. 地震作用下边坡预应力锚索振动台试验研究[J]. 岩石力学与工程学报, 2012, 31(1): 2847-2854. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1031.htm

    Ye H L, Zheng Y R, Li A H, et al. Shaking table test studies of prestressed anchor cable of slope under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 2847-2854(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1031.htm
    [30] Huang Y, Xu X, Liu J J, et al. Centrifuge modeling of seismic response and failure mode of a slope reinforced by a pile-anchor structure[J]. Soil Dynamics and Earthquake Engineering, 2020, 131: 106037.1-106037.11.
    [31] 郑桐, 刘红帅, 袁晓铭, 等. 锚索抗滑桩地震响应的离心振动台模型试验研究[J]. 岩石力学与工程学报, 2016, 35(11): 2276-2286. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201611012.htm

    Zheng T, Liu H S, Yuan X M, et al. Experimental study on seismic response of anti-slide piles with anchor cables by centrifugal shaking table[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2276-2286(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201611012.htm
    [32] 王成汤, 王浩, 张玉丰, 等. 锚索抗滑桩加固堆积型滑坡的受力特性模型试验与数值模拟研究[J]. 岩土力学, 2020, 41(10): 3343-3354. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010020.htm

    Wang C T, Wang H, Zhang Y F, et al. Model test and numerical simulation study on the mechanical characteristics of the anchored slide-resistant pile for stabilizing the colluvial landslide[J]. Rock and Soil Mechanics, 2020, 41(10): 3343-3354(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010020.htm
    [33] Xu H Y, Chen L Z, Deng J L. Uplift tests of jet mixing anchor pile[J]. Soils and Foundations, 2014, 54(2): 168-175.
    [34] 李寻昌, 门玉明, 何光宇. 锚杆抗滑桩桩侧地层抗力分布模式的试验研究[J]. 岩土力学, 2009, 30(9): 2655-2659. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200909023.htm

    Li X C, Men Y M, He G Y. Test research on strata resistance of pile side of anchor anti-slide pile[J]. Rock and Soil Mechanics, 2009, 30(9): 2655-2659(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200909023.htm
    [35] 胡田飞, 朱本珍, 刘建坤, 等. 预应力锚索对微型桩结构抗滑性能影响的试验研究[J]. 中国铁道科学, 2017, 38(3): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703002.htm

    Hu T F, Zhu B Z, Liu J K, et al. Experimental research on effect of prestressed anchor cable on anti-sliding performance of micropile structure[J]. China Railway Science, 2017, 38(3): 10-18(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703002.htm
    [36] Zhang Y Q, Tang H M, Li C D, et al. Design andtesting of a flexible inclinometer probe for model tests of landslide deep displacement measurement[J]. Sensors, 2018, 18(1): 224.
    [37] Hu X L, Zhou C, Xu C, et al. Model tests of the response of landslide-stabilizing piles to piles with different stiffness[J]. Landslides, 2019, 16(11): 2187-2200.
    [38] 张杰豪, 胡新丽, 徐楚, 等. 基于物理模型试验的多层滑带堆积层滑坡-抗滑桩受力特征[J]. 地质科技通报, 2021, 40(4): 171-178. doi: 10.19509/j.cnki.dzkq.2021.0410

    Zhang J H, Hu X L, Xu C, et al. Mechanical characteristics of anti-slide pile of multi-layer sliding zone accumulation layer based on physical model test[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 171-178(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0410
    [39] 孙训方, 方孝淑, 关来泰. 材料力学[M]. 北京: 高等教育出版社, 2013.

    Sun X F, Fang X S, Guan L T. Mechanics of materials[M]. Beijing: Higher Education Press, 2013(in Chinese).
    [40] 国家市场监督管理总局. 滑坡防治设计规范: GB/T 38509-2020[S]. 北京: 中国标准出版社, 2020.

    State Administration for Market Regulation. Code for the design of landslide stabilization: GB/T 38509-2020[S]. Beijing: Standards Press of China, 2020(in Chinese).
    [41] 铁道部第二勘测设计院. 抗滑桩设计与计算[M]. 北京: 中国铁道出版社, 1983.

    No. 2 Survey and Design Institute, Ministry of Railways. Design and calculation of anti-slide pile[M]. Beijing: China Railway Publishing House, 1983(in Chinese).
  • 加载中
图(24) / 表(3)
计量
  • 文章访问数:  882
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18

目录

    /

    返回文章
    返回