留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地下水硫酸盐溯源的进展、问题和发展趋势

靳孟贵 张结 张志鑫 曹明达 黄鑫

靳孟贵, 张结, 张志鑫, 曹明达, 黄鑫. 地下水硫酸盐溯源的进展、问题和发展趋势[J]. 地质科技通报, 2022, 41(5): 160-171. doi: 10.19509/j.cnki.dzkq.2022.0161
引用本文: 靳孟贵, 张结, 张志鑫, 曹明达, 黄鑫. 地下水硫酸盐溯源的进展、问题和发展趋势[J]. 地质科技通报, 2022, 41(5): 160-171. doi: 10.19509/j.cnki.dzkq.2022.0161
Jin Menggui, Zhang Jie, Zhang Zhixin, Cao Mingda, Huang Xin. A review on source identification of dissolved sulfate in groundwater: Advances, problems and development trends[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 160-171. doi: 10.19509/j.cnki.dzkq.2022.0161
Citation: Jin Menggui, Zhang Jie, Zhang Zhixin, Cao Mingda, Huang Xin. A review on source identification of dissolved sulfate in groundwater: Advances, problems and development trends[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 160-171. doi: 10.19509/j.cnki.dzkq.2022.0161

地下水硫酸盐溯源的进展、问题和发展趋势

doi: 10.19509/j.cnki.dzkq.2022.0161
基金项目: 

国家自然科学基金项目 41877192

中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目 CUGDCJJ202212

中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目 CUGDCJJ202213

详细信息
    作者简介:

    靳孟贵(1957—),男,教授,博士生导师,主要从事地下水与环境的教学和科研工作。E-mail: mgjin@cug.edu.cn

  • 中图分类号: X141

A review on source identification of dissolved sulfate in groundwater: Advances, problems and development trends

  • 摘要:

    识别地下水溶解性硫酸盐来源及其生物地球化学循环过程是保障饮用水安全和水生态安全的重要前提, 对于地下水资源的管理和保护具有重要的意义。在广泛查阅文献的基础上, 总结了不同地下水硫酸盐来源δ34SSO4δ18OSO4值域范围; 综述了地下水硫酸盐溯源及硫生物地球化学循环过程解析的研究进展, 指出了存在问题和发展趋势。地下水硫酸盐来源识别方法经历了水化学方法→单同位素→双同位素→多同位素和多示踪剂定性识别→定量评估的发展历程; 因特定地域来源的硫、氧同位素差异和生物地球化学转化过程等因素的影响, 地下水硫酸盐溯源尚存在较大的不确定性。建议在地下水流系统框架上结合土地利用分布, 布置采样点采集污染源和地下水样品, 测定水化学和硫酸盐的硫氧同位素值及其他辅助性示踪剂同位素值或浓度, 利用多学科、多方法充分融合研究区水文地球化学、渗流场、土地利用等信息, 解析地下水硫酸盐的来源及其贡献, 以支撑地下水资源保护和污染防治的科学实施。

     

  • 图 1  不同SO42-来源的特征值范围(据文献[3, 6, 14, 24-26, 29, 37-41])

    黑色点虚线表示细菌异化SO42-还原过程中硫和氧的分馏比值,该分馏比介于1.4:1和4:1之间[16, 36]

    Figure 1.  Range of characteristic values of different SO42- sources

    图 2  溶解硫酸盐的δ18OSO4与水的δ18OH2O的关系

    a. Van Stempvoort等[78]定义了硫化物氧化生成硫酸盐的实验区;b.根据Taylor等[79]提出的硫化物氧化过程中水中的氧参与的百分比

    Figure 2.  Relationship between δ18OSO4 of dissolved sulfate and δ18OH2O of water

    图 3  微生物介导硫循环示意图[96]

    Figure 3.  Schematic diagram of microbial-mediated sulfur cycling

    表  1  地下水SO42来源及识别方法

    Table  1.   Sources of SO42- in groundwater and identification methods

    时间 研究区 含水层类型 来源识别或定量方法 SO42来源 文献
    2002 西班牙东北部 碎屑岩裂隙含水层 水化学和δ34S 蒸发岩, 采矿废水和化肥 [12]
    2016 山东枣庄市 岩溶含水层 水化学和δ34S 石膏, 黄铁矿, 化肥和工业污水 [11]
    1993 加拿大南萨斯喀彻温省 砂页岩裂隙含水层 水化学, δ34S/δ18O 蒸发岩石膏 [49]
    2015 河南焦作市 岩溶含水层孔隙
    含水层
    水化学, δ34S/δ18O 岩溶水: 降水, 石膏和原始土壤矿山废水: 石膏和硫化物; 孔隙水: 污水/污染土壤渗透 [24]
    2018 贵州草海流域 岩溶含水层 水化学, δ34S/δ18O 硫化物氧化 [19]
    2013 波兰西里西亚 岩溶含水层 水化学, δ34S/δ18O, 质量平衡混合模型 大气沉降, 硫化物氧化和蒸发岩溶解 [53]
    2019 山东济南泉域 岩溶含水层 水化学, δ34S/δ18O, 质量平衡混合模型 大气降水, 污水和土壤硫酸盐 [54]
    2019 贵州黔西南州 岩溶含水层 水化学, δ34S/δ18O, 质量平衡混合模型 黄铁矿氧化 [18]
    2016 贵州织金八步 岩溶含水层 水化学, δ2H/δ18O, δ34S/δ18O, 质量平衡混合模型 煤层硫化物氧化和石膏溶解 [50]
    2020 华北平原 孔隙含水层 水化学, δ2H/δ18O, δ34S/δ18O, SIAR 硫化物氧化和污水 [6]
    2021 山东济南泉域 岩溶含水层 水化学, δ2H/δ18O, δ34S/δ18O, Simmr 土壤硫酸盐, 污水和粪肥 [10]
    2015 广西河池里湖 岩溶含水层 水化学, δ15N/δ18O, δ34S, δ13CDIC 工业和家庭燃煤燃烧 [17]
    2005 德国南部 岩溶含水层 δ34S/δ18O, 3H, δ13CDIC 新水: 大气沉降和碳键S矿化; 老水: 岩溶含水层孔隙基质细菌硫酸盐还原 [55]
    2010 菲律宾马尼拉 孔隙含水层 水化学, δ2H/δ18O, δ34S/δ18O,
    87Sr/86Sr
    农业化肥和合成洗涤剂 [56]
    2011 华北平原 孔隙含水层 水化学, δ2H/δ18O, δ34S/δ18O, 14C 浅层地下水: 硫酸盐溶解和硫化物氧化; 深层地下水: 降水和有机S降解 [57]
    2013 西班牙东北部 孔隙含水层 水化学, δ15N/δ18O, 34S/δ18O, δ13CDIC 猪粪和合成化肥 [31]
    2017 西班牙东北部 岩溶含水层 水化学, δ2H/δ18O, δ15N/δ18O,
    δ34S/δ18O, δ11B, δ13CDIC
    污水和矿物肥料 [58]
    2020 墨西哥蒙特雷 岩溶含水层 水化学, δ2H/δ18O, δ15N/δ18O, δ34S/δ18O, HCA/PCA分析, MixSIAR 大气沉降, 蒸发岩溶解和污水 [14]
    2021 墨西哥东北部 海岸含水层 SOM法, δ15N/δ18O, δ34S/δ18O,
    MixSIAR
    海水入侵和土壤硫酸盐 [26]
    2021 山西晋祠泉域 岩溶含水层 水化学, δ2H/δ18O, δ34S, 14C, δ13CDIC, 微生物群落分析 煤矿排水和生活污水 [45]
    2022 比利牛斯山东南 岩溶含水层 δ15N/δ18O, δ34S/δ18O, 反向地球化学模拟, Simmr 石膏溶解 [20]
    下载: 导出CSV
  • [1] Krouse H R, Grinenko V A. Stable isotopes: Natural and anthropogenic sulphur in the environment[M]. New York: John Wiley & Sons, 1991.
    [2] Zak D, Hupfer M, Cabezas A, et al. Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation[J]. Earth-Science Reviews, 2020, 212: 103446.
    [3] Wang H, Zhang Q. Research advances in identifying sulfate contamination sources of water environment by using stable isotopes[J]. International Journal of Environmental Research and Public Health, 2019, 16 (11): 1914. doi: 10.3390/ijerph16111914
    [4] Geurts J J M, Sarneel J M, Willers B J C, et al. Interacting effects of sulphate pollution, sulphide toxicity and eutrophication on vegetation development in fens: A mesocosm experiment[J]. Environmental Pollution, 2009, 157: 2072-2081. doi: 10.1016/j.envpol.2009.02.024
    [5] Tostevin R, Turchyn A V, Farquhar J, et al. Multiple sulfur isotope constraints on the modern sulfur cycle[J]. Earth Planet Science Letters, 2014, 396: 14-21. doi: 10.1016/j.epsl.2014.03.057
    [6] Zhang Q Q, Wang H W, Lu C. Tracing sulfate origin and transformation in an area with multiple sources of pollution in northern China by using environmental isotopes and Bayesian isotope mixing model[J]. Environmental Pollution, 2020, 265: 115105. doi: 10.1016/j.envpol.2020.115105
    [7] Man K, Ma Z M, Xu X J. Research on the mechanism of sulfate pollution of groundwater in Jiaozuo area[J]. Applied Mechanics and Materials, 2014, 665: 436-439. doi: 10.4028/www.scientific.net/AMM.665.436
    [8] WHO (World Health Organization). Guidelines for drinking-water quality[M]. Fourth edition. Incorporating the First Addendum, 2017.
    [9] Kinnunen P, Kyllonen H, Kaartinen T, et al. Sulphate removal from mine water with chemical, biological and membrane technologies[J]. Water Science Technology, 2018, 2017: 194-205. doi: 10.2166/wst.2018.102
    [10] Zhang J, Jin M G, Cao M D, et al. Sources and behaviors of dissolved sulfate in the Jinan karst spring catchment in northern China identified by using environmental stable isotopes and a Bayesian isotope-mixing model[J]. Applied Geochemistry, 2021, 134: 105109. doi: 10.1016/j.apgeochem.2021.105109
    [11] 马燕华, 苏春利, 刘伟江, 等. 水化学和环境同位素在示踪枣庄市南部地下水硫酸盐污染源中的应用[J]. 环境科学, 2016, 37(12): 4690-4699. doi: 10.13227/j.hjkx.201604182

    Ma Y H, Su C L, Liu W J, et al. Identification of sulfate sources in the groundwater system of Zaozhuang: Evidences from isotopic and hydrochemical characteristics[J]. Environmental Science, 2016, 37(12): 4690-4699 (in Chinese with English abstract). doi: 10.13227/j.hjkx.201604182
    [12] Otero N, Soler A. Sulphur isotopes as tracers of the influence of potash mining in groundwater salinisation in the Llobregat Basin (NE Spain)[J]. Water Research, 2002, 36: 3989-4000. doi: 10.1016/S0043-1354(02)00125-2
    [13] Strebel O, Böttcher J, Fritz P. Use of isotope fractionation of sulfate-sulfur and sulfate- oxygen to assess bacterial desulfurication in a sandy aquifer[J]. Journal of Hydrology, 1990, 121: 155-172. doi: 10.1016/0022-1694(90)90230-U
    [14] Torres-Martínez J A, Mora A, Knappett P S K, et al. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model[J]. Water Research, 2020, 182: 115962. doi: 10.1016/j.watres.2020.115962
    [15] Vengosh A, Lindberg T T, Merola B R, et al. Isotopic imprints of mountaintop mining contaminants[J]. Environmental Science and Technology, 2013, 47(17): 10041-10048. doi: 10.1021/es4012959
    [16] Li X, Tang C Y, Cao Y J, et al. A multiple isotope (H, O, N, C and S) approach to elucidate the hydrochemical evolution of shallow groundwater in a rapidly urbanized area of the Pearl River Delta, China[J]. Science of the Total Environment, 2020, 724: 137930. doi: 10.1016/j.scitotenv.2020.137930
    [17] 李瑞, 肖琼, 刘文, 等. 运用硫同位素、氮氧同位素示踪里湖地下河硫酸盐、硝酸盐来源[J]. 环境科学, 2015, 36(8): 2877-2886. doi: 10.13227/j.hjkx.2015.08.020

    Li R, Xiao Q, Liu W, et al. Using δ34S-SO42- and δ18O-SO42-, δ15N-NO3- to trace the source of sulfur and nitrate in Lihu Lake underground water, Guangxi, China[J]. Environmental Science, 2015, 36(8): 2877-2886 (in Chinese with English abstract). doi: 10.13227/j.hjkx.2015.08.020
    [18] Sun J, Takahashi Y, Strosnider W H J, et al. Tracing and quantifying contributions of end members to karst water at a coalfield in Southwest China[J]. Chemosphere, 2019, 234: 777-788. doi: 10.1016/j.chemosphere.2019.06.066
    [19] Cao X X, Wu P, Zhou S Q, et al. Tracing the origin and geochemical processes of dissolved sulphate in a karst-dominated wetland catchment using stable isotope indicators[J]. Journal of Hydrology, 2018, 562: 210-222. doi: 10.1016/j.jhydrol.2018.04.072
    [20] Herms I, Jódar J, Soler A, et al. Identification of natural and anthropogenic geochemical processes determining the groundwater quality in Port del Comte high mountain karst aquifer (SE, Pyrenees)[J]. Water, 2022, 13: 2891.
    [21] 汪炎林, 周忠发, 田衷珲, 等. 池武溪流域岩溶水SO42-的空间变化特征及其来源分析[J]. 环境化学, 2017, 36(12): 2690-2700. doi: 10.7524/j.issn.0254-6108.2017030105

    Wang Y L, Zhou Z F, Tian Z H, et al. Analysis of the spatial variation and sources of SO42- in karst water of Chiwu River[J]. Environmental Chemistry, 2017, 36(12): 2690-2700 (in Chinese with English abstract). doi: 10.7524/j.issn.0254-6108.2017030105
    [22] Blume H P, Brümmer G, Fleige H, et al. Scheffer/schachschabel soil science[M]. Berlin: Springer Verlag, 2016.
    [23] Shoda M E, Sprague L A, Murphy J C, et al. Water-quality trends in U.S. rivers, 2002 to 2012: Relations to levels of concern[J]. Science of the Total Environment, 2019, 650: 2314-2324. doi: 10.1016/j.scitotenv.2018.09.377
    [24] Zhang D, Li X D, Zhao Z Q, et al. Using dual isotopic data to track the sources and behaviors of dissolved sulfate in the western North China Plain[J]. Applied Geochemistry, 2015, 52: 43-56. doi: 10.1016/j.apgeochem.2014.11.011
    [25] Hosono T, Delinom R, Nakano T. Evolution model of δ34S and δ18O in dissolved sulfate in volcanic fan aquifers from recharge to coastal zone and through the Jakarta urban area, Indonesia[J]. Science of the Total Environment, 2011, 409: 2541-2554. doi: 10.1016/j.scitotenv.2011.03.039
    [26] Torres-Martínez J A, Mora A, Mahlknecht J, et al. Determining nitrate and sulfate pollution sources and transformations in a coastal aquifer impacted by seawater intrusion: A multi-isotopic approach combined with self-organizing maps and a Bayesian mixing model[J]. Journal of Hazardous Materials, 2021, 417: 126103. doi: 10.1016/j.jhazmat.2021.126103
    [27] Hong Y T, Zhang H B, Zhu Y X. Sulfur isotopic characteristics of coal in China and sulfur isotopic fractionation during coal-burning process[J]. Chinese Journal of Geochemistry, 1993, 12: 51-59. doi: 10.1007/BF02869045
    [28] Palmer M A, Bernhardt E S, Schlesinger W H, et al. Mountaintop mining consequences[J]. Science, 2010, 327: 148-149. doi: 10.1126/science.1180543
    [29] Vitòria L, Otero N, Soler A, et al. Fertilizer characterization: Isotopic data (N, S, O, C, and Sr)[J]. Environmental Science and Technology, 2004, 38: 3254-3262. doi: 10.1021/es0348187
    [30] Strawn D G, Bohn H L, O'Connor G A. Soil chemistry[M]. 4th ed. New York: John Wiley & Sons, 2015: 381.
    [31] Puig R, Folch A, Mencio A, et al. Multi-isotopic study (15N, 34S, 18O, 13C) to identify processes affecting nitrate and sulfate in response to local and regional groundwater mixing in a large-scale flow system[J]. Applied Geochemistry, 2013, 32: 129-141. doi: 10.1016/j.apgeochem.2012.10.014
    [32] Jurado A, Vazquez-Sune E, Soler A, et al. Application of multi-isotope data (O, D, C and S) to quantify redox processes in urban groundwater[J]. Applied Geochemistry, 2013, 34: 114-125. doi: 10.1016/j.apgeochem.2013.02.018
    [33] Otero N, Soler A, Canals Á. Controls of δ34S and δ18O in dissolved sulphate: Learning from a detailed survey in the Llobregat River (Spain)[J]. Applied Geochemistry, 2008, 23: 1166-1185. doi: 10.1016/j.apgeochem.2007.11.009
    [34] Hosono T, Nakano T, Igeta A, et al. Impact of fertilizer on a small watershed of Lake Biwa: Use of sulfur and strontium isotopes in environmental diagnosis[J]. Science of the Total Environment, 2007, 384: 342-354. doi: 10.1016/j.scitotenv.2007.05.033
    [35] Li X D, Masuda H, Kusakabe M, et al. Degradation of groundwater quality due to anthropogenic sulfur and nitrogen contamination in the Sichuan Basin, China[J]. Geochemical Journal, 40, 2006: 309-332.
    [36] Tuttle M L W, Breit G N, Cozzarelli I M. Processes affecting δ34S and δ18O values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA[J]. Chemical Geology, 2009, 265: 455-467. doi: 10.1016/j.chemgeo.2009.05.009
    [37] Mayer B. Isotope techniques in the study of past and current environmental changes in the hydrosphere and the atmosphere[M]. Vienna: IAEA, 1998: 423-435.
    [38] 韩珣, 任杰, 陈善莉, 等. 基于硫氧同位素研究南京北郊夏季大气中硫酸盐来源及氧化途径[J]. 环境科学, 2018, 39(5): 2010-2014. doi: 10.13227/j.hjkx.201709111

    Han X, Ren J, Chen S L, et al. Sulfur sources and oxidation pathways in summer aerosols from Nanjing northern suburbs using S and O isotopes[J]. Environmental Science, 2018, 39(5): 2010-2014 (in Chinese with English abstract). doi: 10.13227/j.hjkx.201709111
    [39] Li X Q, Bao H M, Gan Y Q, et al. Multiple oxygen and sulfur isotope compositions of secondary atmospheric sulfate in a mega-city in central China[J]. Atmospheric Environment, 2013, 81: 591-599. doi: 10.1016/j.atmosenv.2013.09.051
    [40] 张彦鹏. 多元同位素对石家庄地区地下水地球化学环境演化的指示意义[D]. 武汉: 中国地质大学(武汉), 2015.

    Zhang Y P. Implications of multi-isotopes for groundwater geochemical environment evolution of groundwater in Shijiazhuang area[D]. Wuhan: China University of Geosciences(Wuhan), 2015 (in Chinese with English abstract).
    [41] Claypool G E, Holser W T, Kaplan I R, et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation[J]. Chemical Geology, 1980, 28: 199-260. doi: 10.1016/0009-2541(80)90047-9
    [42] Mizota C, Sasaki A. Sulfur isotope composition of soils and fertilizers: Differences between northern and southern hemispheres[J]. Geoderma, 1996, 71: 77-93. doi: 10.1016/0016-7061(95)00091-7
    [43] 唐春雷, 梁永平, 王维泰, 等. 龙子祠泉域岩溶水水化学-同位素特征[J]. 桂林理工大学学报, 2017, 37(1): 53-58. doi: 10.3969/j.issn.1674-9057.2017.01.007

    Tang C L, Liang Y P, Wang W T, et al. Hydrogeochemical and isotopic characteristics of the karst groundwater systems in Longzici spring basin[J]. Journal of Guilin University of Technology, 2017, 37(1): 53-58 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-9057.2017.01.007
    [44] 赵春红, 梁永平, 卢海平, 等. 娘子关泉域岩溶水SO42-δ34S特征及其环境意义[J]. 中国岩溶, 2019, 38(6): 867-875. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201906007.htm

    Zhao C H, Liang Y P, Lu H P, et al. Chemical characteristics and environmental significance of SO42- and sulfur isotope in the karst watershed of the Niangziguan spring, Shanxi Province[J]. Carsologica Sinica, 2019, 38(6): 867-875 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201906007.htm
    [45] 黄奇波, 覃小群, 刘朋雨, 等. 汾阳地区不同类型地下水SO42-δ34S的特征及影响因素[J]. 第四纪研究, 2014, 34(2): 364-371. doi: 10.3969/j.issn.1001-7410.2014.02.10

    Huang Q B, Qin X Q, Liu P Y, et al. The characteristics and influencing factors of SO42- and sulfate isotope (δ34S) in different types of groundwater in Fenyang, Shanxi Province[J]. Quaternary Sciences, 34(2): 364-371 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-7410.2014.02.10
    [46] Li C C, Gao X B, Wang W Z, et al. Hydro-biogeochemical processes of surface water leakage into groundwater in large scale karst water system: A case study at Jinci, northern China[J]. Journal of Hydrology, 2020, 596: 125691.
    [47] 殷秀兰, 王庆兵, 凤蔚. 济南岩溶泉域泉群区水化学与环境同位素研究[J]. 地质学报, 2017, 91(7): 1651-1660. doi: 10.3969/j.issn.0001-5717.2017.07.016

    Yin X L, Wang Q B, Feng W. Hydrochemical and isotopic study of the karst spring catchment in Jinan[J]. Acta Geologica Sinica, 2017, 91(7): 1651-1660 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.07.016
    [48] 张七道, 肖长源, 李致伟, 等. 黔西北普宜地区富关键金属元素硫铁矿地质、地球化学和S同位素特征及其对成因的约束[J]. 地质科技通报, 2021, 40(6): 1-16. doi: 10.19509/j.cnki.dzkq.2021.0086

    Zhang Q D, Xiao C Y, Li Z W, et al. Geological, geochemical and sulfur isotope geochemistry of critical metals enriched pyritic ore in Puyi area, Northwest Guizhou Province: Constraints on genesis of the deposit[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 1-16 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0086
    [49] Marques J M, Graca H, Eggenkamp H G M, et al. Isotopic and hydrochemical data as indicators of recharge areas, flow paths and water-rock interaction in the Caldas da Rainha-Quinta das Janelas thermomineral carbonate rock aquifer (Central Portugal)[J]. Journal of Hydrology, 2013, 476: 302-313. doi: 10.1016/j.jhydrol.2012.10.047
    [50] Dowuona G N, Mermut A R, Krouse H R. Stable isotope geochemistry of sulfate in relation to hydrogeology in southern Saskatchewan, Canada[J]. Applied Geochemistry, 1993, 8: 255-263. doi: 10.1016/0883-2927(93)90040-N
    [51] 任坤, 潘晓东, 兰干江, 等. 黔中茶店桥地下河流域不同水体硫酸盐浓度特征及来源识别[J]. 地质学报, 2016, 90(8): 1922-1932. doi: 10.3969/j.issn.0001-5717.2016.08.020

    Ren K, Pan X D, Lan G J, et al. Sulfate concentrations and source identification in different water bodies of the Chadianqiao underground river basin in Central Guizhou[J]. Acta Geologica Sinica, 2016, 90(8): 1922-1932 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.08.020
    [52] Spoelstra J, Leal K A, Senger N D, et al. Isotopic characterization of sulfate in a shallow aquifer impacted by agricultural fertilizer[J]. Groundwater, 2021, 59(5): 658-670. doi: 10.1111/gwat.13093
    [53] Samborska K, Halas S, Bottrell S H. Sources and impact of sulphate on groundwaters of Triassic carbonate aquifers, Upper Silesia, Poland[J]. Journal of Hydrology, 2013, 486: 136-150. doi: 10.1016/j.jhydrol.2013.01.017
    [54] 张海林, 王重, 逄伟, 等. 硫氧同位素示踪污染物来源在济南岩溶水中的应用[J]. 中国地质调查, 2019, 6(1): 75- 80. doi: 10.19388/j.zgdzdc.2019.01.11

    Zhang H L, Wang Z, Pang W, et al. Using sulfur and oxygen isotope to trace the source of sulphate in Baotuquan spring area of Jinan[J]. Geological Survey of China, 2019, 6(1): 75- 80 (in Chinese with English abstract). doi: 10.19388/j.zgdzdc.2019.01.11
    [55] Einsiedl F, Mayer B. Sources and processes affecting sulfate in a karstic groundwater system of the Franconian Alb, southern Germany[J]. Environmental Science and Technology, 2005, 39: 7118-7125. doi: 10.1021/es050426j
    [56] Hosono T, Tokunaga T, Tsushima A, et al. Combined use of δ13C, δ15N, and δ34S tracers to study anaerobic bacterial processes in groundwater flow systems[J]. Water Research, 2014, 54: 284-296. doi: 10.1016/j.watres.2014.02.005
    [57] Li X Q, Zhou A G, Gan Y Q, et al. Controls on the 34S and 18O of dissolved sulfate in the quaternary aquifers of the North China Plain[J]. Journal of Hydrology, 2011, 400(3/4): 312-322.
    [58] Puig R, Soler A, Widory D, et al. Characterizing sources and natural attenuation of nitrate contamination in the Baix Ter Aquifer System (NE Spain) using a multi-isotope approach[J]. Science of the Total Environment, 2017, 580: 518-532. doi: 10.1016/j.scitotenv.2016.11.206
    [59] Hosono T, Siringan F, Yamanaka T, et al. Application of multi-isotope ratios to study the source and quality of urban groundwater in Metro Manila, Philippines[J]. Applied Geochemistry, 2010, 25: 900-909. doi: 10.1016/j.apgeochem.2010.03.009
    [60] Phillips D L. Mixing models in analyses of diet using multiple stable isotopes: A critique[J]. Oecologia, 2001, 127(2): 166-170. doi: 10.1007/s004420000571
    [61] Phillips D L, Gregg J W. Uncertainty in source partitioning using stable isotopes[J]. Oecologia, 2001, 127(2): 171-179. doi: 10.1007/s004420000578
    [62] Phillips D L, Koch P L. Incorporating concentration dependence in stable isotope mixing models[J]. Oecologia, 2002, 130: 114-125. doi: 10.1007/s004420100786
    [63] Koch P L, Phillips D L. Incorporating concentration dependence in stable isotope mixing models: A reply to Robbins, Hilderbrand and Farley (2002)[J]. Oecologia, 2002, 133(1): 14-18. doi: 10.1007/s00442-002-0977-6
    [64] Phillips D L, Gregg J W. Source partitioning using stable isotopes: Coping with too many sources[J]. Oecologia, 2003, 136(2): 261-269. doi: 10.1007/s00442-003-1218-3
    [65] Moore J W, Semmens B X. Incorporating uncertainty and prior information into stable isotope mixing models[J]. Ecology Letters, 2008, 11(5): 470-480. doi: 10.1111/j.1461-0248.2008.01163.x
    [66] Parnell A C, Inger R, Bearhop S, et al. Source partitioning using stable isotopes: Coping with too much variation[J]. PLoS ONE, 2010, 5(3): e9672. doi: 10.1371/journal.pone.0009672
    [67] Xue D M, Baets B D, Cleemput O V, et al. Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water[J]. Environmental Pollution, 2012, 161: 43-49. doi: 10.1016/j.envpol.2011.09.033
    [68] Parnell A, Inger R. Stable isotope mixing models in R with simmr[DB/OL]. https://cran.r-project.org/web/packages/simmr/vignettes/simmr.html.2021-02-27/2021-06-10.
    [69] Parnell A C, Phillips D L, Bearhop S, et al. Bayesian stable isotope mixing models[J]. Environmetrics, 2013, 24 (6): 387-399.
    [70] Egbi C D, Anornua G K, Ganyaglo S Y, et al. Nitrate contamination of groundwater in the Lower Volta River Basin of Ghana: Sources and related human health risks[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110227. doi: 10.1016/j.ecoenv.2020.110227
    [71] Stock B C, Jackson A L, Ward E J, et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models[J]. PeerJ, 2018, 6: e5096. doi: 10.7717/peerj.5096
    [72] Ming X X, Groves C, Wu X Y, et al. Nitrate migration and transformations in groundwater quantified by dual nitrate isotopes and hydrochemistry in a Karst World Heritage site[J]. Science of the Total Environment, 2020, 735: 138907. doi: 10.1016/j.scitotenv.2020.138907
    [73] Zhang Y Z, Jiang Y J, Yuan D X, et al. Source and flux of anthropogenically enhanced dissolved inorganic carbon: A comparative study of urban and forest karst catchments in Southwest China[J]. Science of the Total Environment, 2020, 725: 138255. doi: 10.1016/j.scitotenv.2020.138255
    [74] 邹霜, 张东, 李小倩, 等. 豫北山前平原深层地下水硫酸盐来源与污染途径的同位素示踪[J]. 地球科学, 2021, 90(8): 1922-1932. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202025.htm

    Zou S, Zhang D, Li X Q, et al. Sources and pollution pathways of deep groundwater sulfate underneath the piedmont plain in the North Henan Province[J]. Earth Science, 2021, 90(8): 1922-1932 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202025.htm
    [75] Taylor B E, Wheeler M C, Nordstrom D K. Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2669-2678. doi: 10.1016/0016-7037(84)90315-6
    [76] Toran L, Harris R F. Interpretation of sulfur and oxygen isotopes in biological and abiological sulfide oxidation[J]. Geochimica et Cosmochimica Acta, 1989, 53: 2341-2348. doi: 10.1016/0016-7037(89)90356-6
    [77] Krouse H R, Mayer B. Environmental tracers in subsurface hydrology[M]. Boca Raton: Springer, 2000.
    [78] Van Stempvoort D R, Krouse H R. Controls of δ18O in sulphate[C]//Alpers C N, Blowes D W. Environmental geochemistry of sulphide oxidation[M]. Washington, D C: American Chemical Society, 1994.
    [79] Taylor B E, Wheeler M C. Sulfur- and oxygen-isotope geochemistry of acid mine drainage in the western United States: Field and experimental studies revisited[C]//Alpers N, Blowes D W. Environmental geochemistry of sulfide oxidation. Washington D C: American Chemical Society, 1994.
    [80] Balci N, Shanks Ⅲ W C, Mayer B, et al. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite[J]. Geochimica et Cosmochimica Acta, 2007, 71: 3796-811. doi: 10.1016/j.gca.2007.04.017
    [81] Otero N, Canals À, Soler A. Using dual-isotope data to trace the origin and processes of dissolved sulphate: A case study in Calders stream (Llobregat Basin, Spain)[J]. Aquat. Geochem., 2008, 13: 109-126.
    [82] Kroopnick P, Craig H. Atmospheric oxygen: Isotopic composition and solubility fractionation[J]. Science, 1972, 175: 54-55. doi: 10.1126/science.175.4017.54
    [83] Xu S, Li S L, Su J, et al. Oxidation of pyrite and reducing nitrogen fertilizer enhanced the carbon cycle by driving terrestrial chemical weathering[J]. Science of the Total Environment, 2021, 768: 144343. doi: 10.1016/j.scitotenv.2020.144343
    [84] Canfield D E. Biogeochemistry of sulfur isotopes[M]. Washington, D C: The Mineralogical Society of America, 2001.
    [85] Thamdrup B, Finster K, Hansen J W, et al. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese[J]. Applied Environmental Microbiology, 1993, 59: 101-108. doi: 10.1128/aem.59.1.101-108.1993
    [86] Rees C E. A steady-state model for sulphur isotope fractionation in bacterial reduction processes[J]. Geochimica et Cosmochimica Acta, 1973, 37: 1141-1162. doi: 10.1016/0016-7037(73)90052-5
    [87] Strebel O, Böttcher J, Fritz P. Use of isotope fractionation of sulfate-sulfur and sulfate- oxygen to assess bacterial desulfurication in a sandy aquifer[J]. Journal of Hydrology, 1990, 121: 155-172. doi: 10.1016/0022-1694(90)90230-U
    [88] Wen J, Tang C Y, Cao Y J, et al. Understanding the inorganic carbon transport and carbon dioxide evasion in groundwater with multiple sulfate sources during different seasons using isotope records[J]. Science of the Total Environment, 2020, 710: 134480. doi: 10.1016/j.scitotenv.2019.134480
    [89] 李小倩, 周爱国, 刘存富, 等. 河北平原地下水硫酸盐34S和18O同位素演化特征[J]. 地球学报, 2008, 29(6): 745-751. doi: 10.3321/j.issn:1006-3021.2008.06.014

    Li X Q, Zhou A G, Liu C F, et al. 34S and 18O isotopic evolution of residual sulfate in groundwater of the Hebei Plain[J]. Acta Geoscientica Sinica, 2008, 29(6): 745-751 (in Chinese with English abstract). doi: 10.3321/j.issn:1006-3021.2008.06.014
    [90] Canfield D E. Isotope fractionation and sulfur metabolism by pure and enriched cultures of elemental sulfur disproportionating bacteria[J]. Limnology and Oceanography, 1998, 43: 253-264. doi: 10.4319/lo.1998.43.2.0253
    [91] Habicht K S, Canfield D E, Rethmeier J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite[J]. Geochimica et Cosmochimica Acta, 1998, 62: 2585-2595. doi: 10.1016/S0016-7037(98)00167-7
    [92] Kaplan I R, Rittenberg S C. Microbiological fractionation of sulphur isotopes[J]. Journal of General Microbiology, 1964, 34: 195-212. doi: 10.1099/00221287-34-2-195
    [93] Norman A L, Giesemann A H, Krouse H R, et al. Sulphur isotope fractionation during sulphur mineralization: Results of an incubation-extraction experiment with a Black Forest soil[J]. Soil Biology & Biochemistry, 2002, 34: 1425-1438.
    [94] Mayer B, Fritz P, Prietzel J, et al. The use of stable sulfur and oxygen isotope ratios for interpreting the mobility of sulfate in aerobic forest soils[J]. Applied Geochemistry, 1995, 10: 161-173. doi: 10.1016/0883-2927(94)00054-A
    [95] Van Stempvoort D R, Reardon E J, Fritz P. Fractionation of sulfur and oxygen isotopes in sulfate by soil sorption[J]. Geochimica et Cosmochimica Acta, 1990, 54: 2817-2826. doi: 10.1016/0016-7037(90)90016-E
    [96] Aelion C M, Höhener P, Hunkeler D, et al. Environmental isotopes in biodegradation and bioremediation[M]. Boston, MA, USA: CRC Press, 2009.
    [97] Huang X, Jin M G, Ma B, et al. Identifying nitrate sources and transformation in groundwater in a large subtropical basin under a framework of groundwater flow systems[J]. Journal of Hydrology, 2022, 610: 127943. doi: 10.1016/j.jhydrol.2022.127943
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  1739
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 网络出版日期:  2022-11-10

目录

    /

    返回文章
    返回