留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

减氧空气与轻质原油低温氧化反应特征

王云飞 魏建光

王云飞, 魏建光. 减氧空气与轻质原油低温氧化反应特征[J]. 地质科技通报, 2023, 42(2): 207-213. doi: 10.19509/j.cnki.dzkq.2022.0181
引用本文: 王云飞, 魏建光. 减氧空气与轻质原油低温氧化反应特征[J]. 地质科技通报, 2023, 42(2): 207-213. doi: 10.19509/j.cnki.dzkq.2022.0181
Wang Yunfei, Wei Jianguang. Reaction characteristics of low temperature oxidation of light crude oil with disoxidation air[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 207-213. doi: 10.19509/j.cnki.dzkq.2022.0181
Citation: Wang Yunfei, Wei Jianguang. Reaction characteristics of low temperature oxidation of light crude oil with disoxidation air[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 207-213. doi: 10.19509/j.cnki.dzkq.2022.0181

减氧空气与轻质原油低温氧化反应特征

doi: 10.19509/j.cnki.dzkq.2022.0181
基金项目: 

国家自然科学基金重点项目 51334007

详细信息
    作者简介:

    王云飞(1996— ), 男, 现正攻读油气田开发工程专业硕士学位, 主要从事油气田开发工作。E-mail: 3081707726@qq.com

    通讯作者:

    魏建光(1978— ), 男, 教授, 主要从事非常规油气层改造和化学驱提高采收率研究工作。E-mail: weijianguang@163.com

  • 中图分类号: TE35

Reaction characteristics of low temperature oxidation of light crude oil with disoxidation air

  • 摘要:

    塔河北区块轻质原油与减氧空气在温度和压力作用下,探究其组分变化情况和耗氧量规律。在室内使用高温高压反应釜开展原油静态氧化实验,较为系统地研究不同含氧量及不同注气量的减氧空气对原油的氧化作用;并利用色谱分析对烃类分析,收集反应气体进行气体分析,气体组分和原油组分都有不同程度的变化。研究结果表明:①原油样本与减氧空气发生低温氧化反应,重质组分C21以上的组分均下降,低于C13的轻质组分含量均上升;②原油氧化效果随着含氧量上升而增强,反应过程组分对应"拐点"靠前;③含氧量一定时,改变油气比,反应对应的"拐点"不变;含氧量为下降趋势后趋于平缓;④低温氧化过程生成的CO2含量为上升趋势后趋于平缓;⑤在油藏温度(160℃)下,原油主要涉及2个反应热裂解和加氧反应。热裂解反应与含氧量无关,和温度有关,主要反应温度是160~200℃。高碳组分沥青质等重质组分会分解成饱和烃。加氧反应主要是芳香烃,胶质加氧反应也会生成沥青质。当2种反应同时存在时,沥青质参与热裂解的含量大于加氧反应芳香烃等生成的沥青质量,会导致沥青质含量减少。

     

  • 图 1  流程图

    Figure 1.  The flow chart

    图 2  3种含氧量的减氧空气与原油低温氧化反应前后的组分变化图

    Figure 2.  Composition changes before and after low temperature oxidation reaction of three kinds of oxygen containing disoxidation air and crude oil

    图 3  3种含氧量的减氧空气与原油低温氧化反应气体组分(O2, CO2)变化图

    Figure 3.  Changes in gas composition (O2, CO2) in low temperature oxidation reaction among three kinds of oxygen containing disoxidation air and crude oil

    图 4  3种不同注气量的减氧空气与原油低温氧化反应前后的组分变化图

    Figure 4.  Composition changes before and after low-temperature oxidation reaction between disoxidation air with three different gas injection rates and crude oil

    表  1  塔河北区块轻质原油组分分布

    Table  1.   Composition distribution of light crude oil in Tahe North Block

    碳数烃的分布 体积分数φB/%
    C10 6.15
    C11~C15 35.89
    C16~C20 27.31
    C21~C25 15.80
    C26~C30 9.73
    C31~C35 4.37
    >C35 0.75
    总计 100.00
    下载: 导出CSV

    表  2  塔河北区块轻质原油在21%、12%、6%含氧量下族组分变化

    Table  2.   Change in 21%, 12% and 6% group components of light crude oil in Tahe North Block

    含氧量
    φB/%
    芳香烃 饱和烃 胶质 沥青质
    wB/%
    原油 28.69 43.03 16.60 11.68
    6 11.56 65.09 19.16 5.19
    12 7.49 68.69 21.59 4.23
    21 1.49 72.66 24.91 2.94
    下载: 导出CSV
  • [1] 赵永攀, 洪玲, 江绍静, 等. 水驱后特低渗透油藏氮气驱驱油特性分析[J]. 油田化学, 2013, 30(3): 376-379. https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX201303014.htm

    Zhao Y P, Hong L, Jiang S J, et al. Analysis on oil displacement characteristics of nitrogen flooding in ultra-low permeability reservoir after water flooding[J]. Oilfield Chemistry, 2013, 30(3): 376-379(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX201303014.htm
    [2] 魏浩光, 马坤, 岳湘安. 特低渗透油藏水驱后氮气驱油实验[J]. 大庆石油地质与开发, 2013, 32(2): 118-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201302023.htm

    Wei H G, Ma K, Yue X A. Nitrogen flooding experiment after water flooding in ultra-low permeability reservoir[J]. Daqing Petroleum Geology and Development, 2013, 32(2): 118-121(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201302023.htm
    [3] 蒋有伟, 张义堂, 刘尚奇, 等. 低渗透油藏注空气开发驱油机理[J]. 石油勘探与开发, 2010, 37(4): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201004013.htm

    Jiang Y W, Zhang Y T, Liu S Q, et al. Oil displacement mechanism of air injection development in low permeability reservoir[J]. Petroleum Exploration and Development, 2010, 37(4): 471-476(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201004013.htm
    [4] 赵明国, 孙忠新. 气体性质对特低渗透油藏气驱效果的影响: 以大庆油田芳48断块为例[J]. 特种油气藏, 2007, 14(4): 75-77, 108-109. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ200704023.htm

    Zhao M G, Sun Z X. Influence of gas properties on gas drive effect of ultra-low permeability reservoir: Taking fault block Fang 48 in Daqing Oilfield as an example[J]. Special Oil and Gas Reservoir, 2007, 14(4): 75-77, 108-109(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ200704023.htm
    [5] 谷潇雨, 蒲春生, 黄海, 等. 渗透率对致密砂岩储集层渗吸采油的微观影响机制[J]. 石油勘探与开发, 2017, 44(6): 948-954. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201706013.htm

    Gu X Y, Pu C S, Huang H, et al. Micro influence mechanism of permeability on imbibition oil production in tight sandstone reservoir[J]. Petroleum Exploration and Development, 2017, 44(6): 948-954(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201706013.htm
    [6] 肖佃师, 卢双舫, 陆正元, 等. 联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构[J]. 石油勘探与开发, 2016, 43(6): 961-970. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606014.htm

    Xiao D S, Lu S F, Lu Z Y, et al. Determination of pore throat structure of tight sandstone by nuclear magnetic resonance and constant velocity mercury injection[J]. Petroleum Exploration and Development, 2016, 43(6): 961-970(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606014.htm
    [7] Kumar V K, Fassihi M R. Case history and appraisal of the medicine pole hills unit air injection project[J]. SPE Reservoir Engineering, 1997, 10(3): 198-202.
    [8] 郭平, 苑志旺, 廖广志. 注气驱油技术发展现状与启示[J]. 天然气工业, 2009, 29(8): 92-96, 143-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200908040.htm

    Guo P, Yuan Z W, Liao G Z. Development status and enlightenment of gas injection flooding technology[J]. Natural Gas Industry, 2009, 29(8): 92-96, 143-144(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200908040.htm
    [9] 王敬, 姬泽敏, 刘慧卿, 等. 裂缝-孔洞型储集层注氮气辅助重力泄油实验[J]. 石油勘探与开发, 2019, 46(2): 342-353. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201902018.htm

    Wang J, Ji Z M, Liu H Q, et al. Experiment of nitrogen injection assisted gravity oil drainage in fractured vuggy reservoir[J]. Petroleum Exploration and Development, 2019, 46(2): 342-353(in Chinese with English abstract https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201902018.htm
    [10] 胡永乐, 郝明强, 陈国利, 等. 中国CO2驱油与埋存技术及实践[J]. 石油勘探与开发, 2019, 46(4): 716-727. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201904011.htm

    Hu Y L, Hao M Q, Chen G L, et al. China CO2 oil displacement and buried technology and practice[J]. Petroleum Exploration and Development, 2019, 46(4): 716-727(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201904011.htm
    [11] 廖广志, 王红庄, 王正茂, 等. 注空气全温度域原油氧化反应特征及开发方式[J]. 石油勘探与开发, 2020, 47(2): 334-340. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002013.htm

    Liao G Z, Wang H Z, Wang Z M, et al. Oxidation reaction characteristics and development mode of crude oil in full temperature range of air injection[J]. Petroleum Exploration and Development, 2020, 47(2): 334-340(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002013.htm
    [12] Ren S R, Greaves M, Rathbone R R. Air injection LTO process: An IOR technique for light-oil reservoirs[J]. SPE Journal, 2002, 7(1): 90-99.
    [13] 王正茂, 廖广志, 蒲万芬, 等. 注空气开发中地层原油氧化反应特征[J]. 石油学报, 2018, 39(3): 314-319. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803006.htm

    Wang Z M, Liao G Z, Pu W F, et al. Characteristics of formation crude oil oxidation reaction in air injection development[J]. Journal of Petroleum, 2018, 39(3): 314-319(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803006.htm
    [14] 张世明. 低渗透油藏CO2驱气窜通道识别方法[J]. 油气地质与采收率, 2020, 27(1): 101-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202001016.htm

    Zhang S M. Identification method of gas channeling channel in CO2 flooding in low permeability reservoir[J]. Oil and Gas Geology and Recovery, 2020, 27(1): 101-106(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202001016.htm
    [15] 韦琦, 侯吉瑞, 郝宏达, 等. 特低渗油藏CO2驱气窜规律研究[J]. 石油科学通报, 2019, 4(2): 145-153. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201902004.htm

    Wei Q, Hou J R, Hao H D, et al. Study on gas channeling law of CO2 flooding in ultra-low permeability reservoir[J]. Petroleum Science Bulletin, 2019, 4(2): 145-153(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201902004.htm
    [16] 张迎春, 杨莉, 顾文欢, 等. 深海挥发性油藏注气开发气油比变化规律研究及应用[J]. 中国海上油气, 2019, 31(5): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201905011.htm

    Zhang Y C, Yang L, Gu W H, et al. Study and application of gas oil ratio change law in gas injection development of deep-sea volatile reservoir[J]. China Offshore Oil and Gas, 2019, 31(5): 107-112(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201905011.htm
    [17] Lu X B, Wang Y, Tian F, et al. New insights into the carbonate karstic fault system and reservoir formation in the southern Tahe area of the Tarim Basin[J]. Marine and Petroleum Geology, 2017, 86: 587-605.
    [18] Denney D. 30 Years of successful high-pressure air injection: Performance evaluation of Buffalo Field, South Dakota[J]. Journal of Petroleum Technology, 2011, 63(1): 50-53.
    [19] Kumar V K, Gutierrez D, Moore R G, et al. Air injection and waterflood performance comparison of two adjacent units in the Buffalo Field[J]. SPE Reservoir Evaluation & Engineering, 2008, 11(5): 848-858.
    [20] Fassihi M R, Yannimaras D V, Kumar V K. Estimation of recovery factor in light-oil air-injection projects[J]. SPE Reservoir Engineering, 1997, 12(4): 173-178.
    [21] Guo W H, Mower J P. Evolution of plant mitochondrial intron-encoded maturases: Frequent lineage-specific loss and recurrent intracellular transfer to the nucleus[J]. Journal of Molecular Evolution, 2013, 77(1/2): 43-54.
    [22] 李继庆. "双高"阶段砂岩储层水驱剩余油富集模式模拟[J]. 地质科技情报, 2017, 36(3): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703019.htm

    Li J Q. Simulation of water drive residual oil enrichment model of sandstone reservoir in "double high" stage[J]. Geological Science and Technology Information, 2017, 36(3): 137-143(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703019.htm
    [23] 李冰环. 气相色谱方法测定原油全烃碳数分布[J]. 复杂油气藏, 2020, 13(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202001002.htm

    Li B H. Determination of total hydrocarbon carbon number distribution of crude oil by gas chromatography[J]. Complex Oil and Gas Reservoir, 2020, 13(1): 1-4(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202001002.htm
    [24] 王腾飞. 注空气采油低温氧化催化机理研究[D]. 山东青岛: 中国石油大学(华东), 2016.

    Wang T F. Study on catalytic mechanism of low temperature oxidation in air injection oil recovery[D]. Qingdao Shandong: China University of Petroleum(East China), 2016(in Chinese with English abstract).
    [25] 于彪, 刘建良, 杨贵丽, 等. 渤海海域东部不同富油凹陷烃源岩生烃特征差异及意义[J]. 地质科技通报, 2021, 40(4): 104-114, 130. doi: 10.19509/j.cnki.dzkq.2021.0407

    Yu B, Liu J L, Yang G L, et al. Differences and significance of hydrocarbon generation characteristics of source rocks in different oil-rich depressions in the eastern Bohai Sea[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 104-114, 130(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0407
    [26] 宋志峰, 张建光. 缝洞型碳酸盐岩靶向酸压目标体分类与建模[J]. 地质科技通报, 2021, 40(3): 78-84. doi: 10.19509/j.cnki.dzkq.2021.0303

    Song Z F, Zhang J G. Classification and modeling of targeted acid fracturing targets in fractured vuggy carbonate rocks[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 78-84(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0303
    [27] 刘凯, 石万忠, 王任, 等. 鄂尔多斯盆地杭锦旗地区盒1段致密砂岩孔隙结构分形特征及其与储层物性的关系[J]. 地质科技通报, 2021, 40(1): 57-68. doi: 10.19509/j.cnki.dzkq.2021.0102

    Liu K, Shi W Z, Wang R, et al. Fractal characteristics of pore structure of tight sandstone in he 1 member in Hangjinqi area, Ordos Basin and its relationship with reservoir physical properties[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 57-68(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0102
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  517
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01

目录

    /

    返回文章
    返回