留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模型试验的动水驱动型顺层岩质滑坡启滑机制初探

唐雅婷 谭杰 李长冬 李炳辰 周文娟

唐雅婷, 谭杰, 李长冬, 李炳辰, 周文娟. 基于模型试验的动水驱动型顺层岩质滑坡启滑机制初探[J]. 地质科技通报, 2022, 41(6): 137-148. doi: 10.19509/j.cnki.dzkq.2022.0202
引用本文: 唐雅婷, 谭杰, 李长冬, 李炳辰, 周文娟. 基于模型试验的动水驱动型顺层岩质滑坡启滑机制初探[J]. 地质科技通报, 2022, 41(6): 137-148. doi: 10.19509/j.cnki.dzkq.2022.0202
Tang Yating, Tan Jie, Li Changdong, Li Bingchen, Zhou Wenjuan. Preliminary study on the initiation mechanism of hydrodynamic-driven bedding rock landslides based on physical model tests[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 137-148. doi: 10.19509/j.cnki.dzkq.2022.0202
Citation: Tang Yating, Tan Jie, Li Changdong, Li Bingchen, Zhou Wenjuan. Preliminary study on the initiation mechanism of hydrodynamic-driven bedding rock landslides based on physical model tests[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 137-148. doi: 10.19509/j.cnki.dzkq.2022.0202

基于模型试验的动水驱动型顺层岩质滑坡启滑机制初探

doi: 10.19509/j.cnki.dzkq.2022.0202
基金项目: 

国家自然科学基金重大项目 42090054

国家自然科学基金优秀青年科学基金项目 41922055

详细信息
    作者简介:

    唐雅婷(1999-), 女, 现正攻读地质工程专业硕士学位, 主要从事滑坡灾害预测预报方面的研究工作。E-mail: tangyating@cug.edu.cn

    通讯作者:

    李长冬(1981-), 男, 教授, 博士生导师, 主要从事工程地质和岩土工程教学与科研工作。E-mail: lichangdong@cug.edu.cn

  • 中图分类号: P642.22

Preliminary study on the initiation mechanism of hydrodynamic-driven bedding rock landslides based on physical model tests

  • 摘要:

    动水驱动型顺层岩质滑坡数量多、灾害频发、危害大, 是滑坡地质灾害领域的研究重点, 但目前对于滑坡启滑机制的认识仍不充分, 滑坡的准确预报还面临巨大挑战。鉴于此, 以含软弱夹层的中倾角顺层岩质滑坡为研究对象, 通过构建理想的单层滑带滑坡物理模型, 开展了一系列动水作用下的滑坡模型试验研究。结果表明, 动水作用下顺层岩质滑坡从开始变形至失稳滑动需经历初始变形、缓慢变形、加速变形和失稳破坏4个阶段, 而各个阶段的演化特征与滑面粗糙度和倾角密切相关。滑面倾角越大或粗糙度越小, 滑坡体从开始变形至失稳滑动所需的时间则越短; 相应地, 坡体加速变形阶段越不明显, 滑坡破坏的突发性越强。滑带内的渗流冲蚀作用会使滑带土中的骨料流失, 导致其抗剪强度降低, 进而引发坡体滑动。与此同时, 上覆坡体的压剪作用以及变形演化过程亦将反过来影响冲蚀强度。基于滑带土黏聚力随水力梯度和冲蚀时间的变化关系, 提出了渗流驱动下滑带土黏聚力演化模型, 可较好地描述滑带土黏聚力的退化过程。滑面粗糙度的存在不仅显著影响了滑带的冲蚀劣化规律, 还改变了滑带不同区域的破坏模式。此外, 通过考虑滑面粗糙度对滑带不同区域破坏模式的影响, 开展了动水多效应关联分析, 建立了滑坡地质体力学分析模型, 实现了动水作用下顺层岩质滑坡动态稳定性的有效评估。本研究成果可为实际动水驱动型顺层岩质滑坡的预测和防治提供理论参考。

     

  • 图 1  顺层岩质滑坡模型概化图

    Figure 1.  Generalization of the bedding rock landslide model

    图 2  室内模型试验系统图

    Figure 2.  Model test system for bedding rock landslides

    图 3  滑体底部粗糙体布设示意图

    Figure 3.  Schematic diagram of the rough body layout at the bottom of the sliding mass

    图 4  滑带土冲蚀和直剪实验流程

    Figure 4.  Experimental procedure for erosion and direct shear of sliding zone soil

    图 5  动水作用下滑坡宏观变形过程

    Figure 5.  Macroscopic deformation process of the landslide under hydrodynamic action

    图 6  动水作用下坡体的累计位移演化曲线

    Figure 6.  Cumulative displacement evolution curve of the sliding mass under hydrodynamic action

    图 7  动水作用下坡体临界启滑点分析

    Figure 7.  Analysis of the critical initiation sliding point

    图 8  滑带土黏聚力c(a)和内摩擦角φ(b)随水力梯度和时间的演化规律

    c0, φ0为滑带土初始黏聚力和初始内摩擦角

    Figure 8.  Variation in cohesion (a) and internal friction angle (b) of sliding zone soil with hydraulic gradient and time

    图 9  不同工况下的模型试验结束后滑带土力学参数的差异对比

    c0, φ0为滑带土初始黏聚力和初始内摩擦角

    Figure 9.  Comparison of the mechanical parameters of sliding zone soil after the model test with different conditions

    图 10  滑面倾角为28°时不同粗糙度下滑带后缘的结构劣化特征

    Figure 10.  Structural deterioration characteristics of the trailing edge of different roughness sliding zones for the case of a sliding surface inclination of 28°

    图 11  不同工况下滑带土黏聚力预测值与实测值的相对误差

    Figure 11.  Relative error between the predicted and measured cohesion values of sliding zone soil for different conditions

    图 12  滑坡地质体力学分析与计算

    T.下滑力;G.坡体重力;F.抗滑力;P.底部扬压力;L.滑面长度;ρ.坡体密度;g.重力加速度;zw.后缘水头高度

    Figure 12.  Mechanical analysis and calculation of landslides

    图 13  不同粗糙度条件下滑带的表面形貌特征

    Figure 13.  Surface morphological characteristics of slide zones with different roughnesses

    图 14  修正后的滑带抗滑力与下滑力的对比

    Figure 14.  Modified sliding resistance versus downward sliding force

    图 15  滑坡动态稳定性评价

    Figure 15.  Evaluation of the dynamic stability of landslides

    表  1  模型材料基本参数表

    Table  1.   Basic parameters of the model material

    容重γ/(kg·m-3) 黏聚力c/kPa 内摩擦角φ/(°) 基本摩擦角φb/(°)
    滑带 1.65×103 12.1 28.7 19
    滑体 2.31×103 12.0×103 33.7 19
    下载: 导出CSV

    表  2  滑坡模型试验方案

    Table  2.   Scheme of the landslide model test

    碎石数量 倾斜角度θ/(°)
    24 26 28
    R1:2×15 C11 C12 C13
    R2:4×15 C21 C22 C23
    R3:6×15 C31 C32 C33
    下载: 导出CSV
  • [1] 李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108

    Li C D, Long J J, Jiang X H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108
    [2] 王志荣, 王念秦. 黄土滑坡研究现状综述[J]. 中国水土保持, 2004(11): 20-22, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB200411007.htm

    Wang Z R, Wang N Q. Review of research status of loess landslide[J]. Soil and Water Conservation in China, 2004(11): 20-22, 50(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB200411007.htm
    [3] 程强, 周德培, 封志军. 典型红层软岩软弱夹层剪切蠕变性质研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 3176-3180. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1090.htm

    Cheng Q, Zhou D P, Feng Z J. Study on shear creep properties of soft interlayer in typical red bed soft rock[J]. Journal of Rock Mechanics and Engineering, 2009, 28(S1): 3176-3180(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1090.htm
    [4] Tang H M, Zou Z X, Xiong C R, et al. An evolution model of large consequent bedding rockslides, with particular reference to the Jiweishan rockslide in Southwest China[J]. Engineering Geology, 2015, 186: 17-27. doi: 10.1016/j.enggeo.2014.08.021
    [5] Lian B Q, Peng J B, Wang X G, et al. Moisture content effect on the ring shear characteristics of sliding zone loess at high shearing rates[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(2): 999-1008. doi: 10.1007/s10064-019-01597-w
    [6] 冯霄, 王禹, 刘洋, 等. 考虑软弱夹层控滑机制及其空间不确定性的顺层岩质滑坡易发性评价: 万州区铁峰乡应用研究[J]. 地质科技通报, 2022, 41(2): 254-266. doi: 10.19509/j.cnki.dzkq.2022.0049

    Feng X, Wang Y, Liu Y, et al. Susceptibility evaluation of bedding rock landslide considering sliding control mechanism of weak interlayer and spatial uncertainty: Application study in Tiefeng Township, Wanzhou District[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 254-266(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0049
    [7] 谭淋耘, 黄润秋, 裴向军. 库水位下降诱发的特大型顺层岩质滑坡变形特征与诱发机制[J]. 岩石力学与工程学报, 2021, 40(2): 302-314. doi: 10.13722/j.cnki.jrme.2020.0728

    Tan L G, Huang R Q, Pei X J. Deformation characteristics and inducing mechanism of super-large bedding rock landslide induced by reservoir water level decline[J]. Journal of Rock Mechanics and Engineering, 2021, 40(2): 302-314(in Chinese with English abstract). doi: 10.13722/j.cnki.jrme.2020.0728
    [8] Wang J G, Schweizer D, Liu Q B, et al. Three-dimensional landslide evolution model at the Yangtze River[J]. Engineering Geology, 2021, 292(1): 106275.
    [9] Pinyol N M, Alonso E E, Corominas J, et al. Canelles landslide: Modelling rapid drawdown and fast potential sliding[J]. Landslides, 2012, 9(1): 33-51. doi: 10.1007/s10346-011-0264-x
    [10] 林锋, 黄润秋. 滑带土强度对水的敏感性三轴试验研究[C]//佚名. 第七届全国工程地质大会论文集. 北京: 科学出版社, 2004: 124-129.

    Lin F, Huang R Q. Deformation characteristics and inducing mechanism of super-large bedding rock landslide induced by reservoir water level decline[C]//Anon. Proceedings of the 7th National Engineering Geology Congress. Beijing: Science Press, 2004: 124-129(in Chinese).
    [11] 汪斌, 唐辉明, 朱杰兵, 等. 考虑流固耦合作用的库岸滑坡变形失稳机制[J]. 岩石力学与工程学报, 2007, 26(增刊2): 4484-4489. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2133.htm

    Wang B, Tang H M, Zhu J B, et al. Deformation and failure mechanisms of reservoir landslide considering fluid-solid coupling effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 4484-4489(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2133.htm
    [12] 周春梅, 赵子鹏, 鲁阳. 含水量对滑带土强度变形参数及滑坡稳定性的影响[J]. 防灾减灾工程学报, 2016, 36(2): 213-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201602009.htm

    Zhou C M, Zhao Z P, Lu Y. Effect of water content on strength deformation parameters of sliding soil and landslide stability[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(2): 213-219(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201602009.htm
    [13] 范志强, 唐辉明, 谭钦文, 等. 滑带土环剪试验及其对水库滑坡临滑强度的启示[J]. 岩土工程学报, 2019, 41(9): 1698-1706. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909016.htm

    Fang Z Q, Tang H M, Tan Q W, et al. Ring shear test of sliding zone soil and its enlightenment to the strength of reservoir landslide[J]. Journal of Rock Mechanics and Engineering, 2019, 41(9): 1698-1706(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909016.htm
    [14] 张倬元, 王士天, 王兰生. 工程地质分析原理[M]. 北京: 地质出版社, 1994.

    Zhang Z Y, Wang S T, Wang L S. Principle of engineering geology analysis[M]. Beijing: Geological Publishing House, 1994(in Chinese).
    [15] Hoek E, Bray J W. Rock slope engineering[M]. London: Institution of Mining and Metallurgy, 1977.
    [16] Qin S Q, Jiao J J, Wang S J, et al. A nonlinear catastrophe model of instability of planar-slip slope and chaotic dynamical mechanisms of its evolutionary process[J]. International Journal of Solids and Structures, 2001, 38(44/45): 8093-8109.
    [17] 邹宗兴, 唐辉明, 熊承仁, 等. 大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析[J]. 岩石力学与工程学报, 2012, 31(11): 2222-2231. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211009.htm

    Zou Z X, Tang H M, Xiong C R, et al. Geomechanical model and stability analysis of progressive failure of large bedding rock landslide[J]. Journal of Rock Mechanics and Engineering, 2012, 31(11): 2222-2231(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211009.htm
    [18] 亓星, 许强, 郑光, 等. 降雨诱发顺层岩质及土质滑坡动态预警力学模型[J]. 灾害学, 2015, 30(3): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201503008.htm

    Qi X, Xu Q, Zheng G, et al. Dynamic warning mechanics model of bedding rock and soil landslides induced by rainfall[J]. Disaster, 2015, 30(3): 38-42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201503008.htm
    [19] 杜岩, 谢谟文, 吴志祥, 等. 平推式滑坡成因机制及其稳定性评价[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2871-2880. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1028.htm

    Du Y, Xie M W, Wu Z X, et al. Genesis mechanism and stability evaluation of horizontal landslide[J]. Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2871-2880(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1028.htm
    [20] 杨登芳, 胡新丽, 徐楚, 等. 基于物理模型试验的多层滑带滑坡变形演化特征[J]. 地质科技通报, 2022, 41(2): 300-308. doi: 10.19509/j.cnki.dzkq.2021.0069

    Yang D F, Hu X L, Xu C, et al. Deformation evolution characteristics of multi-layer sliding zone landslide based on physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 300-308(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0069
    [21] 李龙起, 罗书学, 王运超, 等. 不同降雨条件下顺层边坡力学响应模型试验研究[J]. 岩石力学与工程学报, 2014, 33(4): 755-762. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404013.htm

    Li L Q, Luo S X, Wang Y C, et al. Experimental study on mechanical response model of bedding slope under different rainfall conditions[J]. Journal of Rock Mechanics and Engineering, 2014, 33(4): 755-762(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404013.htm
    [22] 胡修文, 唐辉明, 刘佑荣. 三峡库区赵树岭滑坡稳定性物理模拟试验研究[J]. 岩石力学与工程学报, 2005, 24(12): 2089-2095. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200512019.htm

    Hu X W, Tang H M, Liu Y R. Physical model studies on stability of Zhaoshuling landslide in area of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2089-2095(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200512019.htm
    [23] Hu X, Zhou C, Xu C, et al. Model tests of the response of landslide-stabilizing piles to piles with different stiffness[J]. Landslides, 2019, 16: 2187-2200.
    [24] Miao F, Wu Y, Li L, et al. Centrifuge model test on the retrogressive landslide subjected to reservoir water level fluctuation[J]. Engineering Geology, 2018, 245: 169-179.
    [25] 李江, 许强, 王森, 等. 川东红层地区降雨入渗模式与岩质滑坡成因机制研究[J]. 岩石力学与工程学报, 2016, 35(增刊2): 4053-4062. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2066.htm

    Li J, Xu Q, Wang S, et al. Research on rainfall infitration models of slopes and formation mechanism of rock landslide in red stratum in the east of Sichuan Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4053-4062(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2066.htm
    [26] Yu H B, Li C D, Zhou J Q, et al. Recent rainfall and excavation-induced bedding rockslide occurring on 22 October 2018 along the Jian-En Expressway, Hubei, China[J]. Landslides, 2020, 17(2): 2619-2629.
    [27] 曹玲, 罗先启, 程圣国. 千将坪滑坡物理模型试验相似材料研究[J]. 三峡大学学报: 自然科学版, 2007, 29(1): 37-39, 45. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200701008.htm

    Cao L, Luo X Q, Cheng S G. Study on similar materials for physical model test of Qianjiangping landslide[J]. Journal of China Three Gorges University: Natural Science, 2007, 29(1): 37-39, 45(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200701008.htm
    [28] Patton F D. Multiple modes of shear failure in rock[C]//Anon. Proceeding of the1st Congress of International Society of Rock Mechanics. [S. l. ]: OnePetro, 1966.
    [29] Okura Y, Kitahara H, Sammori T. Fluidization in dry landslides[J]. Engineering Geology, 2000, 56(3): 347-360.
    [30] 国家发展和改革委员会. 水电水利工程粗粒土试验规程: DL/T5356-2006[S]. 北京: 中国电力出版社, 2007.

    National Development and Reform Commission. Specification for coarse-grained soil test in hydroelectric engineering: DL/T5356-2006[S]. Beijing: China Electric Power Press, 2007(in Chinese).
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  842
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23

目录

    /

    返回文章
    返回