留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于EAHP模型的市政隧道原位二扩四爆破效果评价

吴丹红 吴立 闫天俊 何瑞冰 谢玲丽 董道军

吴丹红, 吴立, 闫天俊, 何瑞冰, 谢玲丽, 董道军. 基于EAHP模型的市政隧道原位二扩四爆破效果评价[J]. 地质科技通报, 2023, 42(3): 46-54. doi: 10.19509/j.cnki.dzkq.2022.0222
引用本文: 吴丹红, 吴立, 闫天俊, 何瑞冰, 谢玲丽, 董道军. 基于EAHP模型的市政隧道原位二扩四爆破效果评价[J]. 地质科技通报, 2023, 42(3): 46-54. doi: 10.19509/j.cnki.dzkq.2022.0222
Wu Danhong, Wu Li, Yan Tianjun, He Ruibing, Xie Lingli, Dong Daojun. Evaluation of the blasting effects of insitu two-to-four lane expansion in the municipal tunnels based on EAHP model[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 46-54. doi: 10.19509/j.cnki.dzkq.2022.0222
Citation: Wu Danhong, Wu Li, Yan Tianjun, He Ruibing, Xie Lingli, Dong Daojun. Evaluation of the blasting effects of insitu two-to-four lane expansion in the municipal tunnels based on EAHP model[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 46-54. doi: 10.19509/j.cnki.dzkq.2022.0222

基于EAHP模型的市政隧道原位二扩四爆破效果评价

doi: 10.19509/j.cnki.dzkq.2022.0222
基金项目: 

国家自然科学基金项目 41672260

详细信息
    作者简介:

    吴丹红(1993—), 女, 现正攻读安全与科学工程专业博士学位,主要从事隧道及地下建筑安全研究工作。E-mail: 1284506165@qq.com

    通讯作者:

    董道军(1971—), 男, 副教授, 主要从事岩土及地下空间工程方面的研究工作。E-mail: cugddj@qq.com

  • 中图分类号: TD235.4+6

Evaluation of the blasting effects of insitu two-to-four lane expansion in the municipal tunnels based on EAHP model

  • 摘要:

    为准确评判隧道拆除爆破效果,保证原位二扩四市政隧道工程在爆破施工期间车辆正常通行,减少既有隧道衬砌结构爆破拆除及扩挖过程的风险,应用物元理论建立了基于EAHP的隧道爆破效果综合评价模型。首先,从爆破方案设计、爆区周边环境、爆破施工质量、爆破器材及爆破安全技术5个方面选取了29个评价因素指标,并划分为5个评价等级。其次,利用可拓变换构建初等关联函数,计算各爆破效果影响因素指标相对评价等级之间的关联度,同时引入层次分析法(AHP法)确定指标权重,根据最大关联度原则判定隧道爆破效果等级,由此建立基于可拓学-层次分析法的综合评价方法,即EAHP。结果表明,将该方法应用于浙江省楼山隧道原位二扩四工程爆破效果评价,得出爆破效果评定结果为Kmax=K2=-0.030 9,即原位二扩四隧道爆破效果评价级别为“爆破效果较好”,与工程实际情况相吻合。因此,基于EAHP综合评价模型选取的评价指标和权重系数合理可靠,通过可拓变换求得的最大关联度也能较好地反映隧道爆破效果等级,说明基于EAHP模型的综合评价方法对隧道爆破效果评判具有较好的适应性。

     

  • 图 1  EAHP模型结构

    Figure 1.  Structure of EAHP model

    图 2  隧道爆破效果评价指标体系

    Figure 2.  Evaluation index system of the tunnel blasting effect

    图 3  新旧隧道相对关系(单位: cm)

    Figure 3.  Relative relationship between the old and the new tunnels

    图 4  隧道洞口周边环境

    Figure 4.  Surroundings of the tunnel opening

    图 5  爆破振动现场测试

    Figure 5.  Blasting vibration field test

    图 6  爆破振动测试结果

    Figure 6.  Blasting vibration test results

    表  1  评价等级划分标准

    Table  1.   Evaluation grading standard

    评价等级等级含义 N01 N02 N03 N04 N05 实际分值
    良好 较好 一般 较差
    B1 C11 [1.00, 0.82) [0.82, 0.68) [0.68, 0.54) [0.54, 0.36) [0.36, 0.00] 0.498
    C12 [1.00, 0.68) [0.68, 0.40) [0.40, 0.28) [0.28, 0.21) [0.21, 0.00] 0.374
    C13 [1.00, 0.85) [0.85, 0.65) [0.65, 0.45) [0.45, 0.30) [0.30, 0.00] 0.479
    C14 [1.00, 0.58) [0.58, 0.36) [0.36, 0.24) [0.24, 0.18) [0.18, 0.00] 0.385
    C15 [1.00, 0.84) [0.84, 0.67) [0.67, 0.50) [0.50, 0.34) [0.34, 0.00] 0.631
    B2 C21 [1.00, 0.82) [0.78, 0.58) [0.58, 0.47) [0.47, 0.30) [0.30, 0.00] 0.703
    C22 [1.00, 0.78) [0.78, 0.51) [0.51, 0.36) [0.36, 0.22) [0.22, 0.00] 0.243
    C23 [1.00, 0.64) [0.64, 0.44) [0.44, 0.31) [0.31, 0.20) [0.20, 0.00] 0.327
    C24 [1.00, 0.88) [0.88, 0.66) [0.66, 0.44) [0.44, 0.21) [0.21, 0.00] 0.506
    C25 [1.00, 0.84) [0.84, 0.64) [0.64, 0.44) [0.44, 0.30) [0.30, 0.00] 0.611
    C26 [1.00, 0.68) [0.68, 0.38) [0.38, 0.28) [0.28, 0.19) [0.19, 0.00] 0.397
    C27 [1.00, 0.58) [0.58, 0.31) [0.31, 0.15) [0.15, 0.06) [0.06, 0.00] 0.418
    B3 C31 [1.00, 0.56) [0.56, 0.26) [0.26, 0.14) [0.14, 0.07) [0.07, 0.00] 0.424
    C32 [1.00, 0.74) [0.74, 0.44) [0.44, 0.17) [0.17, 0.08) [0.08, 0.00] 0.365
    C33 [1.00, 0.86) [0.86, 0.66) [0.66, 0.49) [0.49, 0.33) [0.33, 0.00] 0.502
    C34 [1.00, 0.80) [0.80, 0.59) [0.59, 0.49) [0.43, 0.25) [0.25, 0.00] 0.378
    C35 [1.00, 0.75) [0.75, 0.50) [0.50, 0.25) [0.25, 0.08) [0.08, 0.00] 0.194
    C36 [1.00, 0.60) [0.60, 0.40) [0.40, 0.20) [0.20, 0.10) [0.10, 0.00] 0.281
    C37 [1.00, 0.62) [0.62, 0.32) [0.32, 0.12) [0.12, 0.05) [0.05, 0.00] 0.518
    B4 C41 [1.00, 0.64) [0.64, 0.44) [0.44, 0.24) [0.24, 0.08) [0.08, 0.00] 0.433
    C42 [1.00, 0.65) [0.65, 0.34) [0.34, 0.16) [0.16, 0.06) [0.06, 0.00] 0.178
    C43 [1.00, 0.57) [0.57, 0.27) [0.27, 0.14) [0.14, 0.05) [0.05, 0.00] 0.094
    C44 [1.00, 0.72) [0.72, 0.46) [0.46, 0.28) [0.28, 0.07) [0.07, 0.00] 0.449
    B5 C51 [1.00, 0.84) [0.84, 0.64) [0.64, 0.37) [0.37, 0.17) [0.17, 0.00] 0.767
    C52 [1.00, 0.82) [0.82, 0.61) [0.61, 0.38) [0.38, 0.19) [0.19, 0.00] 0.683
    C53 [1.00, 0.78) [0.78, 0.53) [0.53, 0.28) [0.28, 0.12) [0.12, 0.00] 0.519
    C54 [1.00, 0.69) [0.69, 0.48) [0.48, 0.27) [0.27, 0.09) [0.09, 0.00] 0.104
    C55 [1.00, 0.60) [0.60, 0.30) [0.30, 0.15) [0.15, 0.07) [0.07, 0.00] 0.261
    C56 [1.00, 0.73) [0.73, 0.41) [0.41, 0.23) [0.23, 0.08) [0.08, 0.00] 0.124
    下载: 导出CSV

    表  2  单层关联度Kj(C-N)

    Table  2.   Single layer correlation degree Kj(C-N)

    WA-C K1 K2 K3 K4 K5 所属等级 等级评语
    C11 0.088 2 -0.392 7 -0.267 6 -0.077 8 0.092 1 -0.217 0 N04 较差
    C12 0.013 2 -0.450 0 -0.065 0 0.074 7 -0.200 9 -0.304 8 N03 一般
    C13 0.046 1 -0.436 5 -0.263 1 0.064 4 -0.057 1 -0.272 0 N03 一般
    C14 0.017 8 -0.336 2 0.069 4 -0.061 0 -0.273 6 -0.347 5 N02 较好
    C15 0.043 9 -0.361 6 -0.095 6 0.118 2 -0.262 0 -0.440 9 N03 一般
    C21 0.030 1 -0.741 3 -0.612 0 -0.224 0 0.405 8 -0.370 1 N04 较差
    C22 0.011 2 -0.531 7 -0.297 5 0.405 0 -0.223 8 -0.391 8 N03 一般
    C23 0.003 4 -0.174 7 0.268 4 -0.291 2 -0.452 3 -0.492 6 N02 较好
    C24 0.006 4 -0.323 4 -0.015 9 0.016 4 -0.308 3 -0.449 1 N03 一般
    C25 0.011 4 -0.726 2 -0.476 5 0.112 5 -0.091 8 -0.398 6 N03 一般
    C26 0.011 0 -0.835 1 -0.651 9 -0.328 6 0.880 0 -0.318 8 N04 较差
    C27 0.002 3 -0.376 4 -0.023 9 0.025 1 -0.273 5 -0.457 7 N03 一般
    C31 0.080 1 -0.205 9 0.350 0 -0.292 9 -0.439 6 -0.575 7 N02 较好
    C32 0.086 1 -0.688 5 -0.523 5 -0.325 0 0.104 5 -0.086 5 N04 较差
    C33 0.053 9 -0.489 1 -0.256 8 0.054 8 -0.049 4 -0.279 7 N03 一般
    C34 0.055 1 -0.430 9 -0.237 7 0.154 2 -0.117 9 -0.374 7 N03 一般
    C41 0.157 1 -0.370 6 -0.069 4 0.080 6 -0.305 4 -0.444 3 N03 一般
    C42 0.034 4 -0.416 2 0.044 7 -0.041 1 -0.227 6 -0.342 7 N02 较好
    C43 0.023 7 -0.279 3 0.348 4 -0.205 3 -0.390 7 -0.461 3 N02 较好
    C44 0.043 3 -0.242 9 0.472 2 -0.278 9 -0.401 1 -0.455 0 N02 较好
    C45 0.015 1 -0.506 8 -0.170 5 0.258 6 -0.348 2 -0.438 5 N03 一般
    C46 0.025 7 -0.418 2 -0.240 9 0.024 7 -0.023 5 -0.256 7 N03 一般
    C47 0.004 7 -0.527 5 -0.359 3 -0.120 9 0.159 5 -0.253 0 N04 较差
    C51 0.040 7 -0.238 6 0.456 3 -0.352 8 -0.630 2 -0.719 3 N02 较好
    C52 0.013 6 -0.301 8 0.299 2 -0.187 2 -0.488 7 -0.608 6 N02 较好
    C53 0.039 7 -0.351 8 -0.022 4 0.023 4 -0.331 9 -0.453 4 N03 一般
    C54 0.006 1 -0.849 3 -0.783 3 -0.614 8 0.155 6 -0.118 6 N04 较差
    C55 0.028 0 -0.565 0 -0.130 0 0.175 7 -0.298 4 -0.422 6 N03 一般
    C56 0.007 4 -0.830 1 -0.697 6 -0.460 9 0.550 0 -0.261 9 N04 较差
    注:黑体加粗表示最大值
    下载: 导出CSV

    表  3  单层权重及一致性检验

    Table  3.   Single layer weight and consistency test

    矩阵 单层指标权重W λmax C.I. C.R.
    A WA-C=(0.209 2, 0.075 9, 0.490 5, 0.088 9, 0.135 5)T 5.375 7 0.093 9 0.083 9
    B1 WB1-C=(0.088 2, 0.013 2, 0.046 1, 0.017 8, 0.043 9)T 5.167 0 0.041 8 0.037 3
    B2 WB2-C=(0.030 1, 0.011 2, 0.003 4, 0.006 4, 0.011 4, 0.011 0, 0.002 3)T 7.744 2 0.124 0 0.091 2
    B3 WB3-C=(0.080 1, 0.086 1, 0.053 9, 0.055 1, 0.157 1, 0.034 4, 0.023 7)T 7.659 0 0.109 8 0.080 8
    B4 WB4-C=(0.043 3, 0.015 1, 0.025 7, 0.004 7)T 4.234 4 0.078 1 0.087 8
    B5 WB5-C=(0.040 7, 0.013 6, 0.039 7, 0.006 1, 0.028 0, 0.007 4)T 6.451 2 0.090 2 0.071 6
    注:λmax为判断矩阵的最大特征根;C.I., C.R.均为判断矩阵的一致性检验指标
    下载: 导出CSV

    表  4  爆破振动测试结果

    Table  4.   Blasting vibration test results

    通道名 最大振速v/(cm·s-1) 主振频率f/Hz 爆破振动速度允许标准 爆破对结构安全的影响
    通道1-段1 1.728 83.008 10~12 未超出标准
    通道2-段1 1.702 71.553 12~15 未超出标准
    通道3-段1 0.846 79.956 15~20 未超出标准
    下载: 导出CSV
  • [1] 吴波, 兰扬斌, 杨建新, 等. 新建隧道爆破对临近隧道振动特性的影响研究[J]. 中国安全科学学报, 2019, 29(11): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201911018.htm

    Wu B, Lan Y B, Yang J X, et al. Influence of new tunnel blasting on vibration characteristics of adjacent existing tunnel[J]. China Safety Science Journal, 2019, 29(11): 89-95(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201911018.htm
    [2] Christian K, Andre V, Markus K. A tunnel information modelling framework to support management, simulations and visualisations in mechanised tunnelling projects[J]. Automation in Construction, 2017, 83: 78-90. doi: 10.1016/j.autcon.2017.07.006
    [3] Jelena N, Christian K, Janosch S. An integrated platform for design and numerical analysis of shield tunnelling processes on different levels of detail[J]. Advances in Engineering Software, 2017, 112: 165-179. doi: 10.1016/j.advengsoft.2017.05.012
    [4] Bansal V K. Application of geographic information systems in construction safety planning[J]. International Journal of Project Management, 2011, 31(29): 66-77. http://imensazan-pi.ir/wp-content/uploads/2017/12/Bansal-2011.pdf
    [5] 蒋开春. 明月峡长江大桥水下中深孔爆破安全技术研究[J]. 铁道工程学报, 2019, 36(7): 44-47, 91. doi: 10.3969/j.issn.1006-2106.2019.07.008

    Jiang K C. Research on the underwater medium-deep hole blasting safety technology for Mingyuexia Yangtze River Bridge[J]. Journal of Railway Engineering Society, 2019, 36(7): 44-47, 91(in Chinese with English abstract). doi: 10.3969/j.issn.1006-2106.2019.07.008
    [6] Sacks1 R, Treckmann M, Rozenfeld O, et al. Visualization of work flow to support lean construction[J]. Journal of Construction Engineering and Management, 2009, 23(12): 1307-1315.
    [7] Ho C, Dzeng R. Construction safety training via e-learning: Learning effectiveness and user satisfaction[J]. Computers & Education, 2010, 55(2): 858-867. http://www.onacademic.com/detail/journal_1000035369319410_d41f.html
    [8] Yi K J, Langford D. Scheduling-based risk estimation and safety planning for construction projects[J]. Journal of Construction Engineering and Management, 2006, 21(19): 626-635. http://www.onacademic.com/detail/journal_1000037835799510_4e62.html
    [9] Yang H J, Chew D A S, Wu W W, et al. Design and implementation of an identification system in construction site safety for proactive accident prevention[J]. Accident Analysis and Prevention, 2012, 48(S1): 193-203. http://www.onacademic.com/detail/journal_1000035713964710_20cd.html
    [10] Venugopal M, Eastman C M, Sacks R, et al. Semantics of model views for information exchanges using the industry foundation class schema[J]. Advanced Engineering Informatics, 2012, 26(2): 411-428. doi: 10.1016/j.aei.2012.01.005
    [11] 张志雄, 叶雪云, 殷志强, 等. 基于FAHP法的连续多跨渡槽拆除爆破安全评价[J]. 中国安全科学学报, 2020, 30(11): 67-74. doi: 10.16265/j.cnki.issn1003-3033.2020.11.010

    Zhang Z X, Ye X Y, Yin Z Q, et al. Safety evaluation of continuous multi-span aqueduct's demolition blasting based on FAHP method[J]. China Safety Science Journal, 2020, 30(11): 67-74(in Chinese with English abstract). doi: 10.16265/j.cnki.issn1003-3033.2020.11.010
    [12] Tan C, Tong T K, Chiu G C, et al. Non-structural fuzzy decision support system for evaluation of construction safety management system[J]. International Journal of Project Management, 2002, 34(26): 303-313. http://www.onacademic.com/detail/journal_1000034185104110_981b.html
    [13] 谭松林, 黄玲, 李亚伟. 模糊层次综合评价在深埋隧道围岩质量分级中的应用[J]. 地质科技情报, 2009, 28(1): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200901019.htm

    Tan S L, Huang L, Li Y W. Application of fuzzy-AHP comprehensive evaluation to the quality classification of wall rock in deep buried tunnels[J]. Geological Science and Technology Information, 2009, 28(1): 105-108(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200901019.htm
    [14] 张永刚, 王永红, 王梦恕. 渤海湾海底隧道工程施工风险评估与控制分析[J]. 土木工程学报, 2015, 48(增刊1): 414-418. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1074.htm

    Zhang Y G, Wang Y H, Wang M S. Risk assessment of construction for Bohai Bay Subsea Tunnel[J]. China Civil Engineering Journal, 2015, 48(S1): 414-418(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1074.htm
    [15] 沈世伟, 许君臣, 代树林, 等. 基于熵值赋权法的节理岩体隧道爆破质量可拓学评价[J]. 土木工程学报, 2013, 46(12): 118-126. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201312019.htm

    Shen S W, Xu J C, Dai S L, et al. Extenics evaluation of joint rock tunnel blasting quality based on entropy weighting method[J]. China Civil Engineering Journal, 2013, 46(12): 118-126(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201312019.htm
    [16] Rozenfeld O, Sacks R, Rosenfeld Y, et al. Construction job safety analysis[J]. Safety Science, 2010, 48(4): 491-498. http://www.cabdirect.org/abstracts/20103080799.html
    [17] Chae S, Yoshida T. Application of RFID technology to prevention of collision accident with heavy equipment[J]. Automation in Construction, 2010, 19(3): 368-374. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0926580509001976&originContentFamily=serial&_origin=article&_ts=1483810088&md5=e7276a6a1d1542d2934ab3da4612b62e
    [18] Guo H L, Li H. Life-cycle management of construction projects based on virtual prototyping technology[J]. Journal of Management in Engineering, 2010, 26(1): 41-47. http://repository.lib.polyu.edu.hk/jspui/bitstream/10397/1858/1/LCMVP-1.pdf
    [19] 梁桂兰, 徐卫亚, 谈小龙. 基于熵权的可拓理论在岩体质量评价中的应用[J]. 岩土力学, 2010, 31(2): 535-540. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201002038.htm

    Liang G L, Xu W Y, Tan X L. Application of extension theory based on entropy weight in rock mass quality evaluation[J]. Rock and Soil Mechanics, 2010, 31(2): 535-540(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201002038.htm
    [20] 左昌群, 陈建平. 基于可拓学理论的围岩分级方法在变质软岩隧道中的应用[J]. 地质科技情报, 2007, 26(3): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200703015.htm

    Zuo C Q, Chen J P. Rock mass classification based on extenics theory applied in metamorphic soft rock tunnel[J]. Geological Science and Technology Information, 2007, 26(3): 75-78(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200703015.htm
    [21] 张明磊, 张益东, 季明, 等. 基于模糊可拓综合评价方法的巷道支护参数优化[J]. 采矿与安全工程学报, 2016, 33(6): 972-978. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201606003.htm

    Zhang M L, Zhang Y D, Ji M, et al. Roadway support parameter optimization based on fuzzy extension synthetic evaluation[J]. Journal of Mining & Safety Engineering, 2016, 33(6): 972-978(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201606003.htm
    [22] 郭永华, 龚设, 康三月, 等. 基于层次-可拓(AHP-Extenics)模型的既有隧道衬砌结构病害评价[J]. 隧道建设: 中英文, 2020, 40(增刊1): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD2020S1015.htm

    Guo Y H, Gong S, Kang S Y, et al. Disease evaluation of existing tunnel lining based on AHP-Extenics model[J]. Tunnel Construction, 2020, 40(S1): 115-122(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD2020S1015.htm
    [23] 王述红, 王斐笠, 高红岩, 等. 基于可拓理论的边坡地震稳定性评价方法研究[J]. 土木工程学报, 2016, 49(增刊2): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2016S2023.htm

    Wang S H, Wang F L, Gao H Y, et al. Evaluation method of seismic slope stability based on extension theory[J]. China Civil Engineering Journal, 2016, 49(S2): 132-137(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2016S2023.htm
    [24] 罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. doi: 10.19509/j.cnki.dzkq.2021.0054

    Luo M M, Zhou H, Guo X L, et al. Processes and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0054
    [25] 王剑非, 刘昆珏, 周文皎, 等. 香丽高速公路昌格洛滑坡-隧道工程病害三维数值分析[J]. 地质科技通报, 2022, 41(2): 34-43. doi: 10.19509/j.cnki.dzkq.2022.0009

    Wang J F, Liu K J, Zhou W J, et al. Three-dimensional numerical analysis of the Changgeluo landslide-tunnel engineering disaster on Shangri-La to Lijiang Highway[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 34-43(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0009
    [26] 彭红明, 袁有靖, 李铜邦, 等. 青海天峻新关角隧道涌排水水源识别与量化分析[J]. 地质科技通报, 2022, 41(1): 60-70. doi: 10.19509/j.cnki.dzkq.2022.0026

    Peng H M, Yuan Y J, Li T B, et al. Identification and quantitative analysis of groundwater discharged from New Guanjiao Tunnel in Tianjun, Qinghai[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 60-70(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0026
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  362
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-28

目录

    /

    返回文章
    返回