留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渗透作用下滑带细观结构演变特性

安鹏举 鲁莎 唐辉明 孙思璇 张子涵 缪明昊

安鹏举, 鲁莎, 唐辉明, 孙思璇, 张子涵, 缪明昊. 渗透作用下滑带细观结构演变特性[J]. 地质科技通报, 2022, 41(6): 169-179. doi: 10.19509/j.cnki.dzkq.2022.0226
引用本文: 安鹏举, 鲁莎, 唐辉明, 孙思璇, 张子涵, 缪明昊. 渗透作用下滑带细观结构演变特性[J]. 地质科技通报, 2022, 41(6): 169-179. doi: 10.19509/j.cnki.dzkq.2022.0226
An Pengju, Lu Sha, Tang Huiming, Sun Sixuan, Zhang Zihan, Liao Minghao. Meso-structure evolution of the sliding zone under seepage conditions[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 169-179. doi: 10.19509/j.cnki.dzkq.2022.0226
Citation: An Pengju, Lu Sha, Tang Huiming, Sun Sixuan, Zhang Zihan, Liao Minghao. Meso-structure evolution of the sliding zone under seepage conditions[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 169-179. doi: 10.19509/j.cnki.dzkq.2022.0226

渗透作用下滑带细观结构演变特性

doi: 10.19509/j.cnki.dzkq.2022.0226
基金项目: 

国家自然科学基金重大项目 42090054

国家自然科学基金项目 42107194

详细信息
    作者简介:

    安鹏举(1990-), 男, 助理研究员, 主要从事滑坡地质灾害分析与防治方面的研究工作。E-mail: 308981376@qq.com

    通讯作者:

    唐辉明(1962-), 男, 教授, 博士生导师, 主要从事工程地质与岩土工程的教学和科研工作。E-mail: tanghm@cug.edu.cn

  • 中图分类号: TU413.6+2

Meso-structure evolution of the sliding zone under seepage conditions

  • 摘要:

    库岸滑坡受到库水升降作用影响, 内部渗透压力会产生周期性的变化。动态渗透压力会导致滑带结构与强度产生劣化, 进而影响滑坡整体稳定性。为揭示滑带在渗透作用下的结构演变特征, 通过室内渗流试验结合CT扫描技术获取了黄土坡滑坡滑带在不同渗流条件下的细观结构特征, 采用Avizo软件量化滑带细观结构参数, 定量分析了不同渗透条件下滑带结构的演变规律。结果表明, 滑带的渗透系数随渗流时长的增加而呈指数形式下降, 且水力梯度越大最终试样的渗透系数越小; 连续的CT重构图像显示渗流过程中部分黏土团聚体发生解体, 大孔隙被附近的细颗粒逐渐充填, 试样结构的宏观均一性增强; 统计数据表明滑带土的表观孔隙率由5%下降到了1%, 等效直径小于80 μm的孔隙占比随渗流时长的增加而增多, 而等效直径大于80 μm的孔隙占比随渗流时长的增加而减少。结果证明周期性渗透作用会影响滑带内孔隙结构的分布特征, 细观上表现为大孔隙被小颗粒充填, 导致渗流通道变得细长而弯曲, 孔隙的有效连通性被削弱, 宏观上表现为渗透系数随渗流时长的增加而降低。

     

  • 图 1  黄土坡滑坡工程地质平面图

    Figure 1.  Engineering geology map of the Huangtupo landslide

    图 2  黄土坡临江1号滑坡

    1.崩滑堆积体;2.松散堆积物;3.巴东组灰岩;4.巴东组泥质灰岩;5.碎裂岩;6.软弱夹层;7.深层滑动面;8.松散堆积物与崩滑堆积体界线;9.浅层滑动面; 10.水位线。G2,G7,G9,G11.坡表位移监测点;HZK5, HZK7, HZK8.深部位移监测孔

    Figure 2.  Linjiang No.1 landslide of the Huangtupo landslide

    图 3  黄土坡临江1号滑坡滑带土颗粒级配

    Figure 3.  Particle-size distribution of sliding zone soil in the Linjiang No.1 landslide of the Huangtupo landslide

    图 4  动态渗透压控制系统

    Figure 4.  Dynamic seepage control system

    图 5  高分辨率CT扫描仪

    Figure 5.  High resolution CT scanner

    图 6  渗透系数随渗流次数的变化图

    Figure 6.  Variation in the permeability coefficient with seepage time

    图 7  滑带试样CT扫描结果

    Figure 7.  CT scan results of the sliding zone soil

    图 8  长期浸泡作用下滑带CT切片图

    Figure 8.  CT image slices of the sliding zone under long-term immersion

    图 9  渗透作用下试样表观孔隙变化图

    Figure 9.  Changes in the apparent porosity of the specimens under seepage

    图 10  试样孔隙率随渗透循环次数的变化

    a, c, e分别为试样S2、S3和S4在连续切片上的孔隙率变化;b, d, f分别为S2、S3和S4的平均孔隙率随渗透循环次数的变化趋势

    Figure 10.  Porosity of the specimens changes with the number of seepage cycles

    图 11  不同等效直径孔隙频率占比随渗透循环次数的变化结果(S2-0代表试样S2经过0次渗透循环,其他以此类推)

    Figure 11.  Changes in pore distribution with the number of seepage cycles

    图 12  渗透作用下滑带细观结构变化示意图

    Figure 12.  Schematic diagram of the meso-structural changes in the sliding zone soil under seepage

    表  1  滑带渗透试验方案

    Table  1.   Scheme of the seepage tests for the sliding zone

    试样编号 渗透压力/kPa 渗透循环周期 CT扫描周期节点
    S1 0 0 0, 12
    S2 10 12 0, 1, 3, 6, 12
    S3 50 12 0, 1, 3, 6, 12
    S4 100 12 0, 1, 3, 6, 12
    下载: 导出CSV
  • [1] 唐军峰, 唐雪梅, 肖鹏, 等. 库水位升降与降雨作用下大型滑坡体渗流稳定性分析[J]. 地质科技通报, 2021, 40(4): 153-161. doi: 10.19509/j.cnki.dzkq.2021.0409

    Tang J F, Tang X M, Xiao P, et al. Analysis of seepage stability of large-scale landslide under water-level fluctuation and rainfall[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 153-161(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0409
    [2] 李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108

    Li C D, Long J J, Jiang Q H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108
    [3] Tang H M, Li C D, Hu X L, et al. Deformation response of the Huangtupo landslide to rainfall and the changing levels of the Three Gorges Reservoir[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(3): 933-942. doi: 10.1007/s10064-014-0671-z
    [4] Skempton A W. Residual strength of clays in landslides, folded strata and the laboratory[J]. Geotechnique, 1985, 35(1): 3-18. doi: 10.1680/geot.1985.35.1.3
    [5] 李华斌. 滑坡滑带土微结构的定量研究及其应用[D]. 北京: 中国地质科学院, 1992.

    Li H B. The quantitative research of soil micro-structure on sliding zoon of landslide and its application[D]. Beijing: Chinese Academy of Geological Sciences, 1992(in Chinese with English abstract).
    [6] 严春杰, 唐辉明, 陈洁渝, 等. 三峡库区典型滑坡滑带土微结构和物质组分研究[J]. 岩土力学, 2002, 23(增刊1): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2002S1007.htm

    Yan C J, Tang H M, Chen J Y, et al. Studies of soil microstructures and compositions of slipping zone in reservior district of Three Gorges Profect[J]. Rock and Soil Mechanics, 2002, 23(S1): 23-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2002S1007.htm
    [7] 杨德欢, 韦昌富, 颜荣涛, 等. 细粒迁移及组构变化对黏土渗透性影响的试验研究[J]. 岩土工程学报, 2019, 41(11): 2009-2017. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911007.htm

    Yang D H, Wei C F, Yan R T, et al. Experimental study on effects of fine particle migration and fabric change on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2009-2017(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911007.htm
    [8] 李守定, 李晓, 张年学, 等. 三峡库区宝塔滑坡泥化夹层泥化过程的水岩作用[J]. 岩土力学, 2006, 27(10): 1841-1846. doi: 10.3969/j.issn.1000-7598.2006.10.041

    Li S D, Li X, Zhang N X, et al. Water-rock interaction of clay gouged intercalation sludging process of baota landslides in Three Gorges reservoir area[J]. Rock and Soil Mechanics, 2006, 27(10): 1841-1846(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2006.10.041
    [9] 曹玲, 罗先启. 三峡库区千将坪滑坡滑带土干-湿循环条件下强度特性试验研究[J]. 岩土力学, 2007, 28(增刊1): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1019.htm

    Cao L, Luo X Q. Experimental study of dry-wet circulation of Qianjiangping Landslide's unsaturated soil[J]. Rock and Soil Mechanics, 2007, 28(S1): 93-97(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1019.htm
    [10] Jiao Y Y, Song L, Tang H M, et al. Material weakening of slip zone soils induced by water level fluctuation in the ancient landslides of Three Gorges Reservoir[J]. Advances in Materials Science and Engineering, 2014, 2014(9): 20234.
    [11] 江强强, 刘路路, 焦玉勇, 等. 干湿循环下滑带土强度特性与微观结构试验研究[J]. 岩土力学, 2019, 40(3): 1005-1012, 1022. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903020.htm

    Jiang Q Q, Liu L L, Jiao Y Y, et al. Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles[J]. Rock and Soil Mechanics, 2019, 40(3): 1005-1012, 1022(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903020.htm
    [12] Burton G J, Pineda J A, Sheng D, et al. Microstructural changes of an undisturbed, reconstituted and compacted high plasticity clay subjected to wetting and drying[J]. Engineering Geology, 2015, 193: 363-373.
    [13] Deng Y F, Yue X, Liu S, et al. Hydraulic conductivity of cement-stabilized marine clay with metakaolin and its correlation with pore size distribution[J]. Engineering Geology, 2015, 193: 146-152.
    [14] 王鲁男. 不同含水率与剪切速率下滑带土残余强度特性研究[D]. 武汉: 中国地质大学, 2017.

    Wang L N. Residual Strength Behavior of Slip Soils under Different Moisture Contents and Shearing Rates[D]. Wuhan: China University of Geosciences, 2017(in Chinese with English abstract).
    [15] Wu Y P, Li L W, Feng X L, et al. Effect of cyclic wetting and drying on the microstructure of slip zone soils in Huangtupo landslide[J]. Journal of Engineering Science and Technology Review, 2016, 9(4): 209-216.
    [16] Ke L, Takahashi A. Strength reduction of cohesionless soil due to internal erosion induced by one-dimensional upward seepage flow[J]. Soils and Foundations, 2012, 52(4): 698-711.
    [17] Sato M, Kuwano R. Suffusion and clogging by one-dimensional seepage tests on cohesive soil[J]. Soils and Foundations, 2015, 55(6): 1427-1440.
    [18] Xu P P, Zhang Q Y, Qian H, et al. Microstructure and permeability evolution of remolded loess with different dry densities under saturated seepage[J]. Engineering Geology, 2021, 282: 105875.
    [19] Miao F S, Wu Y P, Li L W, et al. Weakening laws of slip zone soils during wetting-drying cycles based on fractal theory: A case study in the Three Gorges Reservoir(China)[J]. Acta Geotechnica, 2019, 15(7): 1909-1923.
    [20] Zuo L, Xu L, Baudet B A, et al. The structure degradation of a silty loess induced by long-term water seepage[J]. Engineering Geology, 2020, 272: 105634.
    [21] Dong H, Huang R Q, Gao Q F. Rainfall infiltration performance and its relation to mesoscopic structural properties of a gravelly soil slope[J]. Engineering Geology, 2017, 230: 1-10.
    [22] Nguyen C D, Benahmed N, Andò E, et al. Experimental investigation of microstructural changes in soils eroded by suffusion using X-ray tomography[J]. Acta Geotechnica, 2019, 14(3): 749-765.
    [23] 武金博, 吴庆华. 三峡库区黄土坡滑带空隙结构与渗流特性[J]. 长江科学院院报, 2020, 37(9): 102-109. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202009018.htm

    Wu J B, Wu Q H. Pore structure and seepage characteristics of slip zone of Huangtupo landslide in Three Gorges Reservoir area[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(9): 102-109(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202009018.htm
    [24] de Oliveira J A T, Cássaro F A M, Pires L F. Quantification of the pore size distribution of a Rhodic Hapludox under different management systems with X-ray microtomography and computational simulation[J]. Soil and Tillage Research, 2021, 209: 104941.
    [25] Hu X L, Tang H M, Li C D, et al. Stability of Huangtupo riverside slumping mass Ⅱ# under water level fluctuation of Three Gorges Reservoir[J]. Journal of Earth Science, 2012, 23(3), 326-334.
    [26] 罗红明, 唐辉明, 章广成, 等. 库水位涨落对库岸滑坡稳定性的影响[J]. 地球科学: 中国地质大学学报, 2008, 33(5): 687-692. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200805015.htm

    Luo H M, Tang H M, Zhang G C, et al. The influence of water level fluctuation on the bank landslide stability[J]. Earth Science: Journal of China University of Geosciences, 2008, 33(5): 687-692(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200805015.htm
    [27] Chang D, Zhang L. A stress-controlled erosion apparatus for studying internal erosion in soils[J]. Geotech. Test. J., 2011, 34(6): 579-589.
    [28] Xiao M, Shwiyhat N. Experimental investigation of the effects of suffusion on physical and geomechanic characteristics of sandy soils[J]. Geotech. Test. J., 2012, 35(6): 890-900.
    [29] Ke L, Takahashi A. Triaxial erosion test for evaluation of mechanical consequences of internal erosion[J]. Geotech. Test. J., 2014, 37(2): 347-364.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  732
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21

目录

    /

    返回文章
    返回