留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分布式声波传感的大地探测技术研究进展

刘威 朱鸿鹄 王涛 程刚

刘威, 朱鸿鹄, 王涛, 程刚. 基于分布式声波传感的大地探测技术研究进展[J]. 地质科技通报, 2023, 42(1): 29-41. doi: 10.19509/j.cnki.dzkq.2022.0228
引用本文: 刘威, 朱鸿鹄, 王涛, 程刚. 基于分布式声波传感的大地探测技术研究进展[J]. 地质科技通报, 2023, 42(1): 29-41. doi: 10.19509/j.cnki.dzkq.2022.0228
Liu Wei, Zhu Honghu, Wang Tao, Cheng Gang. Research progress of earth exploration technologies based on distributed acoustic sensing[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 29-41. doi: 10.19509/j.cnki.dzkq.2022.0228
Citation: Liu Wei, Zhu Honghu, Wang Tao, Cheng Gang. Research progress of earth exploration technologies based on distributed acoustic sensing[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 29-41. doi: 10.19509/j.cnki.dzkq.2022.0228

基于分布式声波传感的大地探测技术研究进展

doi: 10.19509/j.cnki.dzkq.2022.0228
基金项目: 

国家自然科学基金项目 42077235

江苏省自然科学基金项目 SBK2021022661

长安大学中央高校基本科研业务费专项 300102262513

详细信息
    作者简介:

    刘威(1998-), 男, 现正攻读地质工程专业硕士学位, 主要从事分布式光纤声波传感技术研发与应用研究工作。E-mail: liuwei2020@smail.nju.edu.cn

    通讯作者:

    朱鸿鹄(1979-), 男, 教授, 博士生导师, 主要从事地质工程与岩土力学研究工作。E-mail: zhh@nju.edu.cn

  • 中图分类号: P624

Research progress of earth exploration technologies based on distributed acoustic sensing

  • 摘要:

    作为一种长距离、分布式、实时监测的新型光纤传感技术, 分布式声波传感技术自问世以来便受到了广泛关注。近年来, 研究者们围绕DAS技术展开了大量探索性试验, 并在大地探测领域取得了重要进展。从DAS工作原理出发, 阐述了DAS的基本概念, 对比了地震仪和DAS仪器的性能; 之后通过回顾数个具有代表性的试验, 详细介绍了DAS在油气勘探、天然地震观测、结构成像等大地探测领域的应用进展, 最后总结了基于DAS的大地探测技术体系当前存在的瓶颈, 分析了该技术体系今后的发展趋势。

     

  • 图 1  DTS、BOTDA、OFDR和DAS技术近10年的论文发表量

    Figure 1.  Trend of publications related to DTS, BOTDA, OFDR and DAS in the past 10 years

    图 2  2011-2020年期间DAS论文标题及摘要中出现的高频术语共现图谱

    Figure 2.  Co-occurrence spectrum of high-frequency terms appearing in the titles and abstracts of DAS papers from 2011 to 2020

    图 3  DAS在大地探测中的应用场景

    Figure 3.  Applications of DAS in the field of earth exploration

    图 4  DAS技术的原理图

    Figure 4.  Principles of the DAS technology

    图 5  标距长度和道间距示意图

    Figure 5.  Generic concept of gauge length and channel spacing

    图 6  应变地震仪和摆式地震仪对不同方向入射地震波的响应情况

    (据文献[23]修改)

    Figure 6.  Response of strain seismometer and pendulum seismometer to incident seismic waves in different directions

    图 7  螺旋缠绕光缆的几何结构图

    (据文献[27]修改)

    Figure 7.  Geometry of helically wound fiber

    图 8  DAS与检波器Z分量VSP采集效果对比图[54]

    Figure 8.  VSP images from DAS and geophone data

    图 9  DAS在水力压裂领域的应用

    (据文献[60]修改)

    Figure 9.  Applications of DAS in hydraulic fracturing

    图 10  DAS阵列记录的一次5.8级地震事件(红色/蓝色色标),黑线为附近宽频带地震仪的观测记录

    (据文献[11]修改)

    Figure 10.  Record of DAS array on the 5.8 magnitude earthquake(red/blue color scale), the black line is the record of nearby broad band seismometer

    图 11  相同位置不同时间的剪切波波速变化情况

    (据文献[80]修改)

    Figure 11.  Shear wave velocity changes at different times in the same location, and the black arrow in the figure indicates the approximate location of the basement

    表  1  DAS采集和常规VSP采集对比

    Table  1.   Comparison between DAS and conventional VSP acquisition

    类别 DAS采集 常规VSP采集
    传感元件 光缆 检波器
    采样间隔 分米级 10~20 m
    采集范围 全井段采集 部分井段采集
    井况要求 可适应不同井况 对井况要求高
    安装效率 高效安装 安装费力
    下载: 导出CSV
  • [1] 施斌. 论大地感知系统与大地感知工程[J]. 工程地质学报, 2017, 25(3): 582-591. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201703002.htm

    Shi B. On the ground sensing system and ground sensing engineering[J]. Journal of Engineering Geology, 2017, 25(3): 582-591(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201703002.htm
    [2] Company P T P, Philip D J, Christopher L. Distributed fibre optic sensor system: GB2222247[P]. 1990-2-28.
    [3] 蔡海文, 叶青, 王照勇, 等. 分布式光纤声波传感技术研究进展[J]. 应用科学学报, 2018, 36(1): 41-58. doi: 10.3969/j.issn.0255-8297.2018.01.003

    Cai H W, Ye Q, Wang Z Y, et al. Progress in research of distributed fiber acoustic sensing techniques[J]. Journal of Applied Sciences, 2018, 36(1): 41-58(in Chinese with English abstract). doi: 10.3969/j.issn.0255-8297.2018.01.003
    [4] Lindsey N J, Martin E R. Fiber-optic seismology[J]. Annual Review of Earth and Planetary Sciences, 2021, 49(1): 309-336. doi: 10.1146/annurev-earth-072420-065213
    [5] Lindsey N J, Dawe T C, Ajo-Franklin J B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing[J]. Science, 2019, 366: 1103-1107. doi: 10.1126/science.aay5881
    [6] Sladen A, Rivet D, Ampuero J P, et al. Distributed sensing of earthquakes and ocean-solid earth interactions on seafloor telecom cables[J]. Nature Communications, 2019, 10(1): 1-8. doi: 10.1038/s41467-018-07882-8
    [7] Williams E F, Fernandez-Ruiz M R, Magalhaes R, et al. Distributed sensing of microseisms and teleseisms with submarine dark fibers[J]. Nature Communications, 2019, 10(1): 1-11. doi: 10.1038/s41467-018-07882-8
    [8] Walter F, Graeff D, Lindner F, et al. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain[J]. Nature Communications, 2020, 11(1): 1-10. doi: 10.1038/s41467-019-13993-7
    [9] Booth A D, Christoffersen P, Schoonman C, et al. Distributedacoustic sensing of seismic properties in a borehole drilled on a fast-flowing greenlandic outlet glacier[J]. Geophysical Research Letters, 2020, 47(13): 1-10.
    [10] Mestayer J, Cox B, Wills P, et al. Field trials of distributed acoustic sensing for geophysical monitoring[C]//Anon. SEG Technical Program Expanded Abstracts. [S. l. ]: Society of Exploration Geophysicists, 2011: 4253-4257.
    [11] Lindsey N J, Martin E R, Dreger D S, et al. Fiber-optic network observations of earthquake wavefields[J]. Geophysical Research Letters, 2017, 44(23): 11792-11799.
    [12] Dou S, Lindsey N, Wagner A M, et al. Distributed acoustic sensing for seismic monitoring of the near surface: A traffic-noise interferometry case study[J]. Scientific Reports, 2017, 7(1): 1-12. doi: 10.1038/s41598-016-0028-x
    [13] Lindsey N J. Fiber-optic seismology in theory and practice[D]. [S. l. ]: University of California Berkeley, 2019.
    [14] Dean T, Cuny T, Hartog A H. The effect of gauge length on axially incident P-waves measured using fibre optic distributed vibration sensing[J]. Geophysical Prospecting, 2017, 65(1): 184-193. doi: 10.1111/1365-2478.12419
    [15] Lindsey N J, Rademacher H, Ajo-Franklin J. On the broadband instrument response of fiber-optic DAS arrays[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): 1-16.
    [16] Hartog A H. An introduction to distributed optical fibre sensors[M]. Boca Raton: The Chemical Rubber Company Press, 2017.
    [17] Parker T, Shatalin S, Farhadiroushan M. Distributed acoustic sensing: A new tool for seismic applications[J]. First Break, 2014, 32(2): 61-69.
    [18] Yu C, Zhan Z, Lindsey N J, et al. The potential of DAS in teleseismic studies: Insights from the goldstone experiment[J]. Geophysical Research Letters, 2019, 46(3): 1320-1328. doi: 10.1029/2018GL081195
    [19] Zhu T, Shen J, Martin E R. Sensing earth and environment dynamics by telecommunication fiber-optic sensors: An urban experiment in Pennsylvania, USA[J]. Solid Earth, 2021, 12(1): 219-235. doi: 10.5194/se-12-219-2021
    [20] Wang H F, Zeng X, Miller D E, et al. Ground motion response to an ML 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays[J]. Geophysical Journal International, 2018, 213(3): 2020-2036. doi: 10.1093/gji/ggy102
    [21] Daley T M, Miller D E, Dodds K, et al. Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama[J]. Geophysical Prospecting, 2016, 64(5): 1318-1334. doi: 10.1111/1365-2478.12324
    [22] Zhan Z. Distributed acoustic sensing turns fiber-optic cables into sensitive seismic antennas[J]. Seismological Research Letters, 2020, 91(1): 1-15. doi: 10.1785/0220190112
    [23] Benioff H. A linear strain seismograph[J]. Bulletin of the Seismological Society of America, 1935, 25: 283-309. doi: 10.1785/BSSA0250040283
    [24] Hornman J C. Field trial of seismic recording using distributed acoustic sensing with broadside sensitive fibre-optic cables[J]. Geophysical Prospecting, 2017, 65(1): 35-46. doi: 10.1111/1365-2478.12358
    [25] Hornman K, Kuvshinov B, Zwartjes P, et al. Field trial of a broadside-sensitive distributed acoustic sensing cable forsurface seismic[C]//Anon. 75th European Association of Geoscientists and Engineers Conference and Exhibition 2013. [S. l. ]: European Association of Geoscientists & Engineers. 2013: Tu-04-08.
    [26] Kuvshinov B N. Interaction of helically wound fibre-optic cables with plane seismic waves[J]. Geophysical Prospecting, 2016, 64(3): 671-688. doi: 10.1111/1365-2478.12303
    [27] Ning I L C, Sava P. High-resolution multi-component distributed acoustic sensing[J]. Geophysical Prospecting, 2018, 66(6): 1111-1122. doi: 10.1111/1365-2478.12634
    [28] Papp B, Donno D, Martin J E, et al. A study of the geophysical response of distributed fibre optic acoustic sensors through laboratory-scale experiments[J]. Geophysical Prospecting, 2017, 65(5): 1186-1204. doi: 10.1111/1365-2478.12471
    [29] Zeng X, Lancelle C, Thurber C, et al. Properties of noise cross-correlation functions obtained from a distributed acoustic sensing array at Garner Valley, California[J]. Bulletin of the Seismological Society of America, 2017, 107(2): 603-610. doi: 10.1785/0120160168
    [30] Yuan S, Lellouch A, Clapp R G, et al. Near-surface characterization using a roadside distributed acoustic sensing array[J]. The Leading Edge, 2020, 39(9): 646-653. doi: 10.1190/tle39090646.1
    [31] Ajo-Franklin J B, Dou S, Lindsey N J, et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection[J]. Scientific Reports, 2019, 9(1): 1328-1346. doi: 10.1038/s41598-018-36675-8
    [32] Wang Z, Lu B, Ye Q, et al. Recent progress in distributed fiber acoustic sensing with Phi-OTDR[J]. Sensors, 2020, 20(22): 1-26. doi: 10.1109/JSEN.2020.3028730
    [33] Gabai H, Eyal A. On the sensitivity of distributed acoustic sensing[J]. Optics Letters, 2016, 41(24): 5648-5651. doi: 10.1364/OL.41.005648
    [34] Wu M, Fan X, Liu Q, et al. Quasi-distributed fiber-optic acoustic sensing system based on pulse compression technique and phase-noise compensation[J]. Optics Letters, 2019, 44(24): 5969-5972. doi: 10.1364/OL.44.005969
    [35] 佘骏宽, 朱鸿鹄, 张诚成, 等. 传感光纤-砂土界面力学性质的试验研究[J]. 工程地质学报, 2014, 22(5): 855-860. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201405014.htm

    She J K, Zhu H H, Zhang C C, et al. Experiment study on mechanical properties of interface between sensing optical fiber and sand[J]. Journal of Engineering Geology, 2014, 22(5): 855-860(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201405014.htm
    [36] 程刚, 施斌, 朱鸿鹄, 等. 光纤和砂土界面耦合性能的分布式感测试验研究[J]. 高校地质学报, 2019, 25(4): 487-494. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201904002.htm

    Chen G, Shi B, Zhu H H, et al. Experimental study on coupling performance of fiber and sand interface based on distributed sensing[J]. Geological Journal of China Universities, 2019, 25(4): 487-494(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201904002.htm
    [37] Zhu H H, She J K, Zhang C C, et al. Experimental study on pullout performance of sensing optical fibers in compacted sand[J]. Measurement, 2015, 73: 284-294. doi: 10.1016/j.measurement.2015.05.027
    [38] Zhang C C, Zhu H H, Liu S P, et al. Quantifying progressive failure of micro-anchored fiber optic cable-sand interface via high-resolution distributed strain sensing[J]. Canadian Geotechnical Journal, 2020, 57(6): 871-902. doi: 10.1139/cgj-2018-0651
    [39] Zheng X, Shi B, Zhang C C, et al. Strain transfer mechanism in surface-bonded distributed fiber-optic sensors subjected to linear strain gradients: Theoretical modeling and experimental validation[J]. Measurement, 2021, 179: 109510. doi: 10.1016/j.measurement.2021.109510
    [40] 施斌, 张丹, 朱鸿鹄. 地质与岩土工程分布式光纤监测技术[M]. 北京: 科学出版社, 2019.

    Shi B, Zhang D, Zhu H H. Distributed fiber optic sensing for geoengineering monitoring[M]. Beijing: Science Press, 2019(in Chinese).
    [41] 张诚成, 施斌, 刘苏平, 等. 钻孔回填料与直埋式应变传感光缆耦合性研究[J]. 岩土工程学报, 2018, 40(11): 1959-1967. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811002.htm

    Zhang C C, Shi B, Liu S P, et al. Mechanical coupling between borehole backfill and fiber-optic strain-sensing cable[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 1959-1967(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811002.htm
    [42] Miller D, Parker T, Kashikar S, et al. Vertical seismic profiling using a fibre-optic cable as a distributed acoustic sensor[C]//Anon. 74th EAGE Conference and Exhibition incorporating EUROPEC 2012. European Association of Geoscientists & Engineers, 2012: cp-293-00803.
    [43] Willis M E, Barfoot D, Ellmauthaler A, et al. Quantitative quality of distributed acoustic sensing vertical seismicprofile data[J]. Leading Edge, 2016, 35(7): 605-609. doi: 10.1190/tle35070605.1
    [44] Lellouch A, Biondi B L. Seismic applications of downhole DAS[J]. Sensors, 2021, 21(9): 2897-2917. doi: 10.3390/s21092897
    [45] Kobayashi Y, Uematsu Y, Mochiji S, et al. A field experiment of walkaway distributed acoustic sensing vertical seismic profile in a deep and deviated onshore well in Japan using a fibre optic cable deployed inside coiled tubing[J]. Geophysical Prospecting, 2019, 68(2): 501-520.
    [46] Molenaar M M, Hill D, Webster P, et al. First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics[J]. SPE Drilling & Completion, 2012, 27(1): 32-38.
    [47] Bakku S K, Fehler M, Wills P, et al. Vertical seismic profiling using distributed acoustic sensing in a hydrofrac treatment well[C]//Anon. SEG Technical Program Expanded Abstracts. [S. l. ]: Society of Exploration Geophysicists, 2014: 5024-5028.
    [48] Byerley G, Monk D, Aaron P, et al. Time-lapse seismic monitoring of individual hydraulic fracstages using a downhole DAS array[J]. Leading Edge, 2018, 37(11): 802-810. doi: 10.1190/tle37110802.1
    [49] Teff J, Silver K, Langton D, et al. A technical comparison of downhole Methods through fiber optic VSP, in the eagle ford formation[C]//Anon. SEG Global Meeting Abstracts. [S. l. ]: Society of Exploration Geophysicists. 2016: 3343-3351.
    [50] Mateeva A, Lopez J, Chalenski D, et al. 4D DAS VSP as a tool for frequent seismic monitoring in deep water[J]. The Leading Edge, 2017, 36(12): 995-1000. doi: 10.1190/tle36120995.1
    [51] Zwartjes P, Mateeva A, Tatanova M, et al. 4D DAS VSP in deepwater: Proof of concept and next steps[C]//Anon. SEG Technical Program Expanded Abstracts. [S. l. ]: Society of Exploration Geophysicists. 2017: 5802-5807.
    [52] 郭建. VSP技术应用现状及发展趋势[J]. 勘探地球物理进展, 2004, 27(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200401000.htm

    Guo J. The application status and development trends of VSP technology[J]. Progress in Exploration Geophysics, 2004, 27(1): 1-8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200401000.htm
    [53] 王德志, 刘天佑, 肖都建. 三维井地联合Walkaway VSP技术及其在泌阳凹陷的应用[J]. 地质科技情报, 2007, 26(2): 95-99. doi: 10.3969/j.issn.1000-7849.2007.02.018

    Wang D Z, Liu T Y, Xiao D J. 3D walkaway VSP technology and its application in the Biyang Depression[J]. Geological Science and Technology Information, 2007, 26(2): 95-99(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2007.02.018
    [54] 李彦鹏, 李飞, 李建国, 等. DAS技术在井中地震勘探的应用[J]. 石油物探, 2020, 59(2): 242-249. doi: 10.3969/j.issn.1000-1441.2020.02.010

    Li Y P, Li F, Li J G, et al. Application of distributed acoustic sensing in borehole seismic exploration[J]. Geophysical Prospecting for Petroleum, 2020, 59(2): 242-249(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2020.02.010
    [55] 周小慧, 陈伟, 杨江峰, 等. DAS技术在油气地球物理中的应用综述[J]. 地球物理学进展, 2021, 36(1): 338-350. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202101037.htm

    Zhou X H, Chen W, Yang J F, et al. Application review of DAS technology in oil and gas geophysics[J]. Progress in Geophysics, 2021, 36(1): 338-350(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202101037.htm
    [56] De La Bernardie J, Bour O, Le Borgne T, et al. Thermal attenuation and lag time in fractured rock: Theory and field measurements from joint heat and solute tracer tests[J]. Water Resources Research, 2018, 54(12): 10053-10075.
    [57] Li L, Tan J Q, Schwarz B, et al. Recent advances and challenges of waveform-based seismic location methods at multiple scales[J]. Reviews of Geophysics, 2020, 58(1): 1-47.
    [58] Eaton D W, Van Der Baan M, Birkelo B, et al. Scaling relations and spectral characteristics of tensile microseisms: Evidence for opening/closing cracks during hydraulic fracturing[J]. Geophysical Journal International, 2014, 196(3): 1844-1857. doi: 10.1093/gji/ggt498
    [59] Jin G, Roy B. Hydraulic-fracture geometry characterization using low-frequency DAS signal[J]. The Leading Edge, 2017, 36(12): 975-980. doi: 10.1190/tle36120975.1
    [60] Karrenbach M, Dan K, Cole S, et al. Hydraulic-fracturing-induced strain and microseismic using in situ distributed fiber-optic sensing[J]. The Leading Edge, 2017, 36(10): 837-844. doi: 10.1190/tle36100837.1
    [61] Webster P, Wall J, Perkins C, et al. Micro-seismic detection using distributed acoustic sensing[C]//Anon. SEG Technical Program Expanded Abstracts 2013. [S. l. ]: Society of Exploration Geophysicists, 2013: 2459-2463.
    [62] Karrenbach M, Cole S, Ridge A, et al. Fiber-optic distributed acoustic sensing of microseismicity, strain and temperature during hydraulic fracturing[J]. Geophysics, 2019, 84(1): 11-23.
    [63] 刘均荣, 史伟新, 李博宇, 等. 分布式光纤声音传感技术在油田中的应用及发展前景[J]. 地质科技情报, 2017, 36(5): 262-266. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705037.htm

    Liu J R, Shi W X, Li B Y, et al. Applications and development prospect of distributed acoustic sensing technology in oilfields[J]. Geological Science and Technology Information, 2017, 36(5): 262-266(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705037.htm
    [64] 赵巍, 张文彪, 李蒙, 等. 四维地震驱动的深海浊积岩油藏地质模型更新方法及应用: 以安哥拉PU油田为例[J]. 地质科技通报, 2022, 41(4): 301-308. doi: 10.19509/j.cnki.dzkq.2022.0115

    Zhao W, Zhang W B, Li M, et al. Updating and application for a reservoir geological model of deep-water turbidites: A case study of a 4D seismic survey from the PU Oilfield in Angola[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 301-308 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0115
    [65] Wu H, Wong W F, Yang Z H, et al. Dual-well 3D vertical seismic profile enabled by distributed acoustic sensing in deepwater Gulf of Mexico[J]. Interpretation, 2015, 3(3): 11-25. doi: 10.1190/INT-2014-0248.1
    [66] Lecerf D, Hodges E, Lu S, et al. Imaging primaries and high-order multiples for permanent reservoir monitoring: Application to Jubarte field[J]. The Leading Edge, 2015, 34(7): 824-828.
    [67] Han B, Guan H, Yao J, et al. Distributed acoustic sensing with sensitivity-enhanced optical cable[J]. IEEE Sensors Journal, 2021, 21(4): 4644-4651.
    [68] Daley T M, Freifeld B M, Ajo-Franklin J, et al. Field testing of fiber-optic distributed acoustic sensing(DAS) for subsurface seismic monitoring[J]. The Leading Edge, 2013, 32: 699-706.
    [69] 张丽娜, 任亚玲, 林融冰, 等. 分布式光纤声波传感器及其在天然地震学研究中的应用[J]. 地球物理学进展, 2020, 35(1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202001009.htm

    Zhang L N, Ren Y L, Lin R B, et al. Distributed acoustic sensing system and its application for seismological studies[J]. Progress in Geophysics, 2020, 35(1): 65-71(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202001009.htm
    [70] Nayak A, Ajo-Franklin J. Distributed acoustic sensing using dark fiber for array detection of regional earthquakes[J]. Seismological Research Letters, 2021, 92(4): 2441-2452.
    [71] Fernandez-Ruiz M R, Soto M A, Williams E F, et al. Distributed acoustic sensing for seismic activity monitoring[J]. Apl Photonics, 2020, 5(3). 030901.
    [72] Li Z, Zhan Z. Pushing the limit of earthquake detection with distributed acoustic sensing and template matching: A case study at the Brady geothermal field[J]. Geophysical Journal International, 2018, 215(3): 1583-1593.
    [73] 王宝善, 曾祥方, 宋政宏, 等. 利用城市通信光缆进行地震观测和地下结构探测[J]. 科学通报, 2021, 66(20): 2590-2595. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202120010.htm

    Wang B S, Zeng X F, Song Z H, et al. Seismic observation and subsurface imaging using a urban telecommunication optic-fiber cable[J]. Chinese Science Bulletin, 2021, 66(20): 2590-2595(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202120010.htm
    [74] Song Z, Zeng X, Wang B, et al. Distributed acoustic sensing using a large-volume airgun source and internet fiber in an urban area[J]. Seismological Research Letters, 2021, 92(3): 1950-1960.
    [75] Song Z, Zeng X, Thurber C H. Surface-wave dispersion spectrum inversion method applied to Love and Rayleigh waves recorded by distributed acoustic sensing[J]. Geophysics, 2021, 86(1): 1-12.
    [76] Lancelle C. Distributed acoustic sensing for imaging near-surface geology and monitoring traffic at Garner Valley[D]. Madison: The University of Wisconsin-Madison, 2016.
    [77] Spica Z J, Perton M, Martin E R, et al. Urban seismic site characterization by fiber-optic seismology[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): 1-14.
    [78] 宋政宏, 曾祥方, 徐善辉, 等. 分布式光纤声波传感系统在近地表成像中的应用: Ⅰ. 主动源高频面波[J]. 地球物理学报, 2020, 63(2): 532-540. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202002015.htm

    Song Z H, Zeng X F, Xu S H et al. Distributed acoustic sensing for imaging shallow structure: Ⅰ. Active source survey[J]. Chinese Journal of Geophysics, 2020, 63(2): 532-540(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202002015.htm
    [79] 林融冰, 曾祥方, 宋政宏, 等. 分布式光纤声波传感系统在近地表成像中的应用: Ⅱ. 背景噪声成像[J]. 地球物理学报, 2020, 63(4): 1622-1629. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202004028.htm

    Lin R B, Zeng X F, Song Z H et al. Distributed acoustic sensing for imaging shallow structure: Ⅱ. Ambient noise tomography[J]. Chinese Journal of Geophysics, 2020, 63(4): 1622-1629(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202004028.htm
    [80] Fang G, Li Y E, Zhao Y, et al. Urban near-surface seismic monitoring using distributed acoustic sensing[J]. Geophysical Research Letters, 2020, 47(6): 1-13.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1858
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-31

目录

    /

    返回文章
    返回